An Invitation to Higher Mathematics

Math 215, Fall Semester, 2001

Problems & Exercises Week 6 – September 24–28 "In mathematics you don't understand things, you just get used to them." John von Neumann

25. Prove the following

 $(\exists q \in \mathbb{Z}, n = 2q + 1) \Longrightarrow (\exists p \in \mathbb{Z}, n^2 = 2p + 1)$

26. (turn in Monday, October 1)

Write the following statement in terms of quantifiers and prove it. For integers a and b, if a and b are even then so is a + b.

27. (turn in Monday, October 1) For sets A, B, C and D prove that

 $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$

and give an example to show that these sets are not always equal.

28. (turn in Monday, October 1) Define functions $f, g: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$ and g(x) = 1 - x. a) Find the functions i) $f \circ f$ ii) $f \circ g$ iii) $g \circ f$ iv) $g \circ g$

b) List the elements of the set $\{x \in \mathbb{R} \mid fg(x) = gf(x)\}$.

29. (turn in Monday, October 1)

Define the composition of the function $f: X \to Y$ and the function $g: Y \to Z$ to be the function $g \circ f: X \to Z$ with $g \circ f(x) = g(f(x))$ for all $x \in X$. Prove that:

a) If f is injective and g is injective, then $g \circ f$ is injective.

b) If f is surjective and g is surjective, then $g \circ f$ is surjective.