
An Invitation to Higher Mathematics
Math 215, Fall Semester, 2001

Solutions to Problems & Exercises
Week 9 – October 15 –19

34. (turn in Monday, October 22)
For f :X → Y and g:Y → Z show that:
a) if g ◦ f is injective, then f is injective.
b) if g ◦ f is surjective, then g is surjective.

Proof of a): It is given that g ◦ f is injective:

(P ) ∀x, y ∈ X,x 6= y =⇒ g(f(x)) 6= g(f(y))

We need to prove that f is injective:

(Q) ∀x, y ∈ X,x 6= y =⇒ f(x) 6= f(y)

The easiest method is to prove the contrapositive: ∼ Q =⇒∼ P .
Assume f is not injective, then there exists x, y ∈ X,x 6= y with

f(x) = f(y). Apply g to both sides to get g(f(x)) = g(f(y)). This
shows that g ◦ f is not injective, which is ∼ P .

Proof of b): It is given that g ◦ f is surjective:

∀z ∈ Z,∃x ∈ X, z = g(f(x))

We need to prove that g is surjective:

∀z ∈ Z,∃y ∈ Y, z = g(y)

The direct proof is easiest. Given z ∈ Z, by assumption there exists x ∈
X with z = g(f(x)). For this x let y = f(x). The g(y) = g(f(x)) = z,
so for this y we have z = g ◦ f(x).
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35. (turn in Monday, October 22)
For f :X → Y and g:Y → X, use problem 34 to prove that if g ◦ f is
injective and f ◦ g is surjective, then f is bijective.

Proof: Suppose that g ◦ f is injective, then by 34) f injective.
Suppose that f ◦ g is surjective, then by 34) f surjective.
With the assumption that g ◦ f is injective and f ◦ g is surjective
we conclude f is both injective and surjective, or f is bijective.

36. (turn in Monday, October 22)
For f :X → Y and g:Y → X, if g ◦ f and f ◦ g are both bijective,
show that f and g are both bijective.

Proof: Assume that f ◦ g and g ◦ f are both bijective.
First, f ◦ g is injective and g ◦ f is surjective, so by problem 35) f is

bijective.
Second, g ◦ f is injective and f ◦ g is surjective, so by problem 35) g

is bijective.

37. (turn in Monday, October 22)
The functions f :X → Y and g:Y → X are inverses of each other if
∀x ∈ X, g(f(x)) = x, and ∀y ∈ Y, f(g(y)) = y. Use problem 36 to
prove that f and g are both bijections.

Proof: Assume that f and g are inverses of each other. Then the
compositions f ◦ g = idY and g ◦ f = idX . The identity map of any set
is always injective and surjective, so in particular the maps idx:X → X

and idY :Y → Y are both bijections. Then by problem 36) both f and
g are bijections.
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38. (turn in Monday, October 22)
Given five points in the plane with integer coordinates, prove that
the midpoint between at least one of pair of the points has integer
coordinates.

Proof: Each point (m,n) ∈ Z2 has an even/odd parity associated to
each coordinate m and n. Let P = {(e, e), (e, o), (o, e), (o, o)} be the set
of parities. Define a map p:Z2 → P by setting

p(m,n) = (parity m, parity n)

For example, p(2, 3) = (e, o).

Let S ⊂ Z
2 be a set of 5 distinct points with integer coordinates.

The restriction of the map p:S → P maps a set of 5 elements to a set
of 4 elements, so by the “pigeon hole principle” the map p cannot be
injective. This means there must be distinct pairs of points (m,n) ∈ S
and (r, s) ∈ S with p(m,n) = p(r, s). We write out what this means in
the four possible cases:

If m is odd, then r must also be odd; while if m is even, then r must
also be even. In both cases, the sum m+ r is even, so divisible by 2.

If n is odd, then s must also be odd; while if n is even, then s must
also be even. In both cases, the sum n+ s is even, so divisible by 2.

The midpoint of (m,n) and (r, s) is the point (
m+ r

2
,
n+ s

2
) which

has integer coordinates.

39. (turn in Monday, October 22)
Let S ⊂ {1, 2, 3, . . . , 2n} where S has n + 1 elements. Show that S
contains two numbers such that one divides the other. Recall that
n|m means there is some integer p so that m = p · n.

Hint: Any number m can be written uniquely as an odd number
times a power of 2, or m = (2k − 1) · 2j . Then consider the function
f :S → {1, 2, 3, . . . , n} defined by f(m) = k.
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Proof: Each positive integer m can be divided by 2 as many times as
needed until the remainder is a positive integer. For example, 14 = 2 · 7
while 28 = 4 · 7 = 22 · 7. A positive integer can be written as (2k − 1)
where k is a positive integer. Combine the division with this way of
writing odd integers to get every positive integer m can be written as
m = (2k − 1) · 2j .

Use this to define a function from the integers to the integers

f : {1, 2, 3, . . . } → {1, 2, 3, . . . } by f(m) = k, if m = (2k − 1) · 2j

For example, f(14) = 4 as 14 = 7 · 2 = (2 · 4 − 1) · 2. Also, f(28) = 4
as 28 = 7 · 4 = (2 · 4 − 1) · 2. Two more examples are f(100) = 13 and
f(8) = 1 (check these!)

Back to the problem: given the set S ⊂ {1, 2, 3, . . . , 2n} we restrict
the function f :S → {1, 2, 3, . . . }. The key point is to figure out the
maximum value for f on the set {1, 2, 3, . . . , 2n} as this will also be a
maximum value for f on S.

When x = 2k − 1 is odd, then f(2k − 1) = k. So 2k − 1 ≤ 2n implies
k ≤ n+ 1/2 or k ≤ n as both k and n are integers.

When x is even then x = (2k − 1) · 2j where 2j > 1. If x ≤ 2n then
2j > 1 implies (2k − 1) ≤ 2n/2j ≤ 2n so again k ≤ n.

Combining the odd and even cases, we have shown the value of f(x)
is at most n when x ≤ n, so f : {1, 2, 3, . . . , 2n} → {1, 2, . . . , n}.

The restriction of f to the set S maps a set with n + 1 elements
to a set with n elements, so f :S → {1, 2, . . . , n} cannot be injective.
Therefore, there must be distinct integers x, y ∈ S so that f(x) = f(y).
Let k = f(x) = f(y) be the common value. Then x = (2k − 1) · 2j and
y = (2k − 1) · 2` for some integers j, ` ≥ 0.

If j ≥ ` then
x

y
=

(2k − 1) · 2j

(2k − 1) · 2`
= 2j−`

is an integer so x divides y. Otherwise, ` < j

y

x
=

(2k − 1) · 2`

(2k − 1) · 2j
= 2`−j

is an integer so y divides x.


