Math 310: Hour Exam 1

(Solutions)

Prof. S. Smith: Mon 29 Sept 1997

Problem 1: Find the row-reduced echelon form of the following augmented matrix. INDICATE the row operations you use.

$$(A|b) = \begin{pmatrix} 1 & 2 & 3 & | & 4 \\ 2 & 3 & 4 & | & 6 \\ 3 & 4 & 5 & | & 8 \end{pmatrix}.$$

Then give the solutions of the corresponding linear system Ax = b.

So solutions are (r, 2-2r, r) for free variable $x_3 = r$

Problem 2: Give the LU-decomposition of

$$A = \left(\begin{array}{cc} 4 & 5 \\ 2 & 3 \end{array}\right);$$

that is, find lower-triangular L and upper-triangular U, so that A = LU.

Get
$$U$$
 from $\stackrel{A_2^{-\frac{1}{2}\times 1}}{\to}$ $\begin{pmatrix} 4 & 5 \\ 0 & \frac{1}{2} \end{pmatrix}$. So L from inverse operation $A_2^{+\frac{1}{2}\times 1}$ is $\begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix}$

Problem 3: Find the inverse (any method) of:

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{array}\right).$$

Quick via adjoint: det (by bottom row) is
$$0 - 0 + 2(-2) = -4$$
 so inverse is $-\frac{1}{4}\begin{pmatrix} -1 & -3 & 2 \\ -2 & 2 & 0 \\ 1 & -1 & -2 \end{pmatrix}$

Problem 4: Find the determinant of

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 3 & 4 & 2 \\ 1 & 3 & 1 \end{array}\right).$$

What is the determinant of A^{-1} ?

Top row: 1(4.1 - 3.2) - 1(3.1 - 1.2) = (-2) - (1) = -3. Then $det(A^{-1}) = \frac{1}{\det(A)} = -\frac{1}{3}$.

Problem 5: (a) Is (2, 5, 4) a linear combination of (1, 1, 2) and (1, 3, 2)? Either give coefficients, or explain why not possible.

No: Set up augmented matrix $(A|b) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 3 & 5 \\ 2 & 2 & 4 \end{pmatrix}$.

Row-reduction quickly produces coefficients $\frac{1}{2}$ and $\frac{3}{2}$.

(b) Let V be the space of 2×2 matrices, and W the subSET of lower triangular matrices. Show that the W is a subSPACE of V.

 $A \in W$ says lower triangular, meaning $A_{2,1} = 0$, so A has form $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$.

Similarly if $B \in W$ it has form $\begin{pmatrix} d & 0 \\ e & f \end{pmatrix}$

Is $A + B \in W$? It is $\begin{pmatrix} a+d & 0 \\ b+e & c+f \end{pmatrix}$, also lower-triangular, so yes.

For scalar r, is $rA \in W$? It is $\begin{pmatrix} ra & 0 \\ rb & rc \end{pmatrix}$, also lower-triangular, so yes.