Prof. S. Smith: Fri 18 October 2002

Problem 1: (a) Using Gauss-Jordan elimination, find the row-reduced echelon form of the following augmented matrix: $(A|b) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$. Show the STEPS of the method you use.

Use row operations (Gauss-Jordan)

(b) Using your answer in (a), give all SOLUTIONS of the linear equation system Ax = b determined by the augmented matrix (A|b).

Notice column 3 has no pivot, so that variable is free.

Infinite number of solutions: $(2 + \alpha, -1 - \alpha, \alpha)^T$ for real α .

Problem 2: (a) Find the LU-decomposition (show method) of the matrix $A = \begin{pmatrix} 3 & 4 \\ 6 & 7 \end{pmatrix}$. To row-reduce (Gaussian elmination) $\begin{pmatrix} 3 & 4 \\ 6 & 7 \end{pmatrix}$, we apply $A_2^{-2\times 1}$ to obtain $\begin{pmatrix} 3 & 4 \\ 0 & -1 \end{pmatrix}$ as U, and take as L the inverse of the matrix for $A_2^{-2\times 1}$, namely $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

- (b) Find the inverse (by any method—but show work) of the matrix $A = \begin{pmatrix} 3 & 4 \\ 6 & 7 \end{pmatrix}$. By adjoint method, $A^{-1} = -\frac{1}{3}\begin{pmatrix} 7 & -4 \\ -6 & 3 \end{pmatrix}$.
- **Problem 3:** (a) Recall that \mathcal{P}_3 is the space of polynomials of degree less than three (that is, quadratic polynomials). Are the three "vectors" $1+x+x^2$, $2-2x+2x^2$, and $4+4x^2$ in this space linearly independent? (Why/why not?)

Set a linear combination equal to zero: $a(1 + x + x^2) + b(2 - 2x + 2x^2) + c(4 + 4x^2) = 0$.

Get an equation for each power of x:

(1:)
$$a + 2b + 4c = 0$$

$$(x:) a - 2b = 0$$

$$(x^2:)$$
 $a + 2b + 4c = 0$

When we row-reduce the corresponding matrix $A = \begin{pmatrix} 1 & 2 & 4 \\ 1 & -2 & 0 \\ 1 & 2 & 4 \end{pmatrix}$ to $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,

the third column has no pivot: so "No", linearly dependent rather than independent.

(b) Solve Ax = b by Cramer's Rule for the augmented matrix (A|b): $\begin{pmatrix} 2 & 4 & 6 \ 3 & 5 & 7 \end{pmatrix}$. $\det(A) = 2 \cdot 5 - 3 \cdot 4 = -2$, so $x_1 = \det\begin{pmatrix} 6 & 4 \ 7 & 5 \end{pmatrix} / (-2) = -1$, and $x_2 = \det\begin{pmatrix} 2 & 6 \ 3 & 7 \end{pmatrix} / (-2) = 2$.

Problem 4: (a) Let S be the subspace of \mathbb{R}^3 consisting of all 3-vectors whose coordinates sum to zero: that is, $x_1 + x_2 + x_3 = 0$. Show that S is a subpace of \mathbb{R}^3 .

- (+) If (x_1, x_2, x_3) satisfies $x_1 + x_2 + x_3 = 0$, and (y_1, y_2, y_3) satisfies $y_1 + y_2 + y_3 = 0$, then their sum $(x_1 + y_1, x_2 + y_2, x_3 + y_3)$ satisfies
- $(x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3) = (x_1 + x_2 + x_3) + (y_1 + y_2 + y_3) = 0 + 0 = 0,$ and so also lies in S.
- (sc.mult.) For a scalar c, the scalar multiple $c(x_1, x_2, x_3) = (cx_1, cx_2, cx_3)$ satsifies $cx_1 + cx_2 + cx_2 = c(x_1 + x_2 + x_3) = c \cdot 0 = 0$, and so also lies in S.
- (b) Give a basis for the row space of the matrix $A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 9 & -1 \\ -3 & 8 & 3 \\ -2 & 3 & 2 \end{pmatrix}$.

What is the dimension of this space?

We compute the row-reduced echelon form of A as $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Therefore the first two rows give a basis, and the dimension is 2.

Problem 5: (a) Find a basis for the subspace S of polynomials in \mathcal{P}_2 of form $ax^2 + bx + (3a + 2b)$; show that your basis IS a basis.

Best to choose the "free variables" a, b in the "standard basis" way:

- Thus a = 1, b = 0 gives $x^2 + 3, a = 0, b = 1$ gives x + 2.
- Spanning set: $ax^2 + bx + (3a + 2b) = a(x^2 + 3) + b(x + 2)$.
- linearly independent: $0 = ax^2 + bx + (3a + 2b)$ gives equations for each power of x,
- including a = 0, b = 0; that is, only the zero-solution.
- (b) Find the matrix of transition from the "old" basis given by the standard basis of \mathbf{R}^2 (namely $(1,0)^T$ and $(0,1)^T$) to the "new" basis given by $(1,2)^T$ and $(2,3)^T$.

One way: The matrix $[new]_{old}$ is given by $\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$,

so the transition matrix $[old]_{new}$ from old to new is given by its inverse, namely $\begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$.

What are the coordinates of $(5,7)^T$ in this new basis?

Can multiply transition matrix by "old" coordinates $(5,7)^T$ to get new coordinates $(-1,3)^T$.