(Solutions)

Prof. S. Smith: Fri 17 October 2003

Problem 1: (a) Using Gauss-Jordan elimination, find the row-reduced echelon form of the fol-

lowing augmented matrix: $(A|b) = \begin{pmatrix} 1 & -7 & 0 & 6 & 5 \\ 0 & 0 & 1 & -2 & -3 \\ -1 & 7 & -4 & 2 & 7 \end{pmatrix}$. Show the STEPS you use.

(b) Using your answer in (a), give all SOLUTIONS (if any) of the linear equation system Ax = b determined by the augmented matrix (A|b).

Notice columns 2 and 4 have no pivot, so those variables are free.

Then infinite number of solutions: $(5 + 7\alpha - 6\beta, \alpha, -3 + 2\beta, \beta)^T$ for all real α, β

Problem 2: (a) Find the *LU*-decomposition (show method) of the matrix $A = \begin{pmatrix} 6 & 9 \\ 4 & 5 \end{pmatrix}$.

To row-reduce (Gaussian elmination) $\begin{pmatrix} 6 & 9 \\ 4 & 5 \end{pmatrix}$, we apply $A_2^{-\frac{2}{3}\times 1}$ to obtain $\begin{pmatrix} 6 & 9 \\ 0 & -1 \end{pmatrix}$ as U, and take as L the inverse of the matrix for $A_2^{\frac{2}{3}\times 1}$, namely $\begin{pmatrix} 1 & 0 \\ \frac{2}{5} & 1 \end{pmatrix}$

(b) Find the inverse (by any method—but show work) of the matrix $A = \begin{pmatrix} 5 & 10 \\ 4 & 7 \end{pmatrix}$.

By adjoint method, $A^{-1} = -\frac{1}{5} \begin{pmatrix} 7 & -10 \\ -4 & 5 \end{pmatrix}$.

Problem 3: (a) Let S be the subSET of \mathbb{R}^3 consisting of all 3-vectors $(x_1, x_2, x_3)^T$ which satisfy the condition $x_1 - 5x_2 - 2x_3 = 0$. Show that S is a subSPACE of \mathbb{R}^3 .

Vectors in S have the general form form $(5a + 2b, a, b)^T$.

(+) Take two general vectors in S: $(5a+2b,a,b)^T$, $(5c+2d,c,d)^T$ and add; their sum is $(5a+2b+5c+2d,a+c,b+d)^T = (5(a+c)+2(b+d),a+c,b+d)^T$, which is also in S. (sc.mult.) For a general scalar c, and general vector $(5a+2b,a,b)^T$ in S,

the scalar multiple is $((5a+2b)c, ac, bc)^T = (5(ac)+2(bc), ac, bc)^T$, which is also in S.

(b) Give a basis for the nullspace of the matrix $A = \begin{pmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{pmatrix}$.

What is the dimension of this space?

Using $A_1^{-3\times 2}$ we obtain the row-reduced echelon form of $A\begin{pmatrix} 1 & 0 & -7 & 6 \\ 0 & 1 & 4 & -2 \end{pmatrix}$.

The solutions of Ax = 0 are of form $(7\alpha - 6\beta, -4\alpha + 2\beta, \alpha, \beta)^T$,

so choosing $\alpha = 1, \beta = 0$ and then $\alpha = 0, \beta = 1$,

we get a basis given by $(7, -4, 1, 0)^T$ and $(-6, 2, 0, 1)^T$.

Therefore the dimension of the nullspace is 2.

Problem 4: (a) Recall that \mathcal{P}_3 is the space of polynomials of degree less than three (that is, quadratic polynomials). Are the three "vectors" $1 + x + x^2$, $2 - 2x + 2x^2$, and $4 + 4x^2$ a spanning set for this space? (Why/why not?)

Set a linear combination equal to a general vector of the space:

$$a(1+x+x^2) + b(2-2x+2x^2) + c(4+4x^2) = d + ex + fx^2.$$

Get an equation for each power of x:

$$(1:) \ a + 2b + 4c = d$$

$$(x:) \ a - 2b = e$$

$$(x^2:)$$
 $a + 2b + 4c = f$

To the augmented matrix
$$\begin{pmatrix} 1 & 2 & 4 & d \\ 1 & -2 & 0 & e \\ 1 & 2 & 4 & f \end{pmatrix}$$
 we apply $A_3^{-1 \times 1}$ to get $\begin{pmatrix} 1 & 2 & 4 & d \\ 1 & -2 & 0 & e \\ 0 & 0 & 0 & f - d \end{pmatrix}$.

From the third row, we see that ONLY polynomials with d = f (that is, of the form $d+ex+dx^2$) are in the span our our set of 3 vectors; so not all vectors of \mathcal{P}_3 are in their span: that is, they are NOT a spanning set for \mathcal{P}_3 .

(b) Find the coordinates of the vector $(3,2)^T$ in the basis of \mathbf{R}^2 given by $(1,1)^T$ and $(2,-1)^T$. Solve $\begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 2 \end{pmatrix}$ to get $(\frac{7}{3},\frac{1}{3})^T$.

Problem 5: (a) If A is a 3×5 matrix of rank 2, what is the nullity (dimension of the nullspace) of A?

rank + nullity = 5, so nullity = 3.

(b) Use the method of the (classical) adjoint to find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

First compute
$$det(A) = -9$$
; so we get $A^{-1} = -\frac{1}{9} \begin{pmatrix} -9 & -6 & 14 \\ 0 & 3 & -1 \\ 0 & 0 & -3 \end{pmatrix}$.