Math 310: Hour Exam 1

Prof. S. Smith: Wed 18 October 2006

(Solutions)

Problem 1: (a) Using Gaussian elimination, find the row echelon form

of the following augmented matrix: $(A|b) = \begin{pmatrix} 1 & 1 & 2 & 5 \\ 1 & 2 & 0 & 5 \\ 0 & -1 & 2 & 0 \end{pmatrix}$. Show the STEPS you use.

 $\stackrel{A_2^{-1\times 1}}{\to} \left(\begin{array}{ccc|c} 1 & 1 & 2 & 5 \\ 0 & 1 & -2 & 0 \\ 0 & -1 & 2 & 0 \end{array}\right) \stackrel{A_3^{1\times 2}}{\to} \left(\begin{array}{ccc|c} 1 & 1 & 2 & 5 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right).$

(b) Using your answer in (a), perform back substitution to give all SOLUTIONS (if any) of the linear equation system Ax = b determined by the augmented matrix (A|b).

Notice column 3 has no pivot, so that variable x_3 is free; call it " α ".

Row 2 says $x_2 - 2x_3 = 0$, so $x_2 = 2x_3 = 2\alpha$.

Row 1 says $x_1 + x_2 + 2x_3 = 5$, so $x_1 = 5 - 2\alpha - 2\alpha = 5 - 4\alpha$.

So infinite number of solutions $(5-4\alpha, 2\alpha, \alpha)^T = (5, 0, 0)^T + \alpha(-4, 2, 1)^T$ for all real α .

Problem 2: (a) Find the LU-decomposition (show STEPS) of the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 4 & -4 \\ 0 & 4 & 6 \end{pmatrix}$.

We apply $A_2^{2\times 1}$ to obtain $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 0 \\ 0 & 4 & 6 \end{pmatrix}$ and then $A_3^{-1\times 2}$ to obtain $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ as U.

The product of the matrices for the inverses, namely $A_2^{-2\times 1}$ and $A_3^{1\times 2}$, gives $L=\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

(b) Find the inverse (any method, but show STEPS) of the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Probably quickest is via chapter 1, row-reduce the "big" augmented matrix (A|I) to $(I|A^{-1})$:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right) \stackrel{A_1^{-1 \times 2}}{\rightarrow} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right) \stackrel{A_2^{-1 \times 3}}{\rightarrow} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right).$$

So
$$A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Problem 3: (a) Let S be the subSET of \mathbb{R}^3 consisting of

all 3-vectors $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ satisfying the condition $x_3 = x_1 + x_2$. Show that S is a subSPACE of \mathbf{R}^3 .

A general vector in S has the form $\begin{pmatrix} a \\ b \\ a+b \end{pmatrix}$.

(closure, +) Take two general vectors in S: $\begin{pmatrix} a \\ b \\ a+b \end{pmatrix}$, $\begin{pmatrix} c \\ d \\ c+d \end{pmatrix}$, and add; their sum is $\begin{pmatrix} a+c \\ b+d \\ (a+b)+(c+d) \end{pmatrix} = \begin{pmatrix} a+c \\ b+d \\ (a+c)+(b+d) \end{pmatrix}$ which is also in S.

(closure, sc.mult.) For a general scalar c, and general vector $\begin{pmatrix} a \\ b \\ a+b \end{pmatrix}$ in S,

the scalar multiple is $\begin{pmatrix} ca \\ cb \\ c(a+b) \end{pmatrix} = \begin{pmatrix} ca \\ cb \\ ca+cb \end{pmatrix}$, which is also in S. (b) What is the rank of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix}$?

Give a basis for the span of the columns of A (column space).

The rank is 2; for example the row-reduced echelon form of A is $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ with 2 pivots. Just need two LI columns. In this example, in fact any pair of columns from A will work.

Problem 4: (a) Are the vectors

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix}$, and $v_3 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ linearly independent in \mathbf{R}^3 ? (Why/why not?)

NO: (short) Notice $v_3 = v_2 - v_1$.

(longer) Set a linear combination equal to zero, get system: $\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 5 & 3 & 0 \\ 2 & 4 & 2 & 0 \end{pmatrix}$

Row-reduce to $\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$; no pivot in 3rd column, so infinite solutions, hence lin.dep.

(b) Inside the space $\mathbb{R}^{2\times 2}$ of 2×2 matrices.

let S denote the subspace consisting of symmetric matrices, which have the general form $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.

Do $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, and $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ give a spanning set for S? (Why/why not) YES: Set an unknown linear combination equal to the general vector:

$$c_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c_3 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \text{ so } \begin{pmatrix} c_1 + c_2 + c_3 & c_2 + c_3 \\ c_2 + c_3 & c_3 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$
We obtain an equation from each of the four matrix positions:

$$c_1 + c_2 + c_3 = a$$

$$c_2 + c_3 = b$$
 (twice, from $(1, 2)$ and $(2, 1)$ positions)
 $c_3 = c$

And we CAN solve. Just quickly by hand:
$$c_3 = c$$
; $c_2 = b - c$; and $c_1 = a - (b - c) - c = a - b$. Or by the usual full method: $\begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 1 & b \\ 0 & 0 & 1 & c \end{pmatrix}$ has row-reduced echelon form $\begin{pmatrix} 1 & 0 & 0 & a - b \\ 0 & 1 & 0 & b - c \\ 0 & 0 & 1 & c \end{pmatrix}$.

Problem 5: (a) Recall that the space \mathcal{P}_3 consists of polynomials of degree less than 3.

Find a basis for the subspace S of \mathcal{P}_3 given by polynomials with constant term equal to zero.

What is the dimension of S? (Say WHY your choice is a basis.)

A general polynomial with zero constant term has form $ax + bx^2$.

So choosing a, b successively in the "standard basis" way, we get 2 "vectors" in a basis:

$$a = 1, b = 0$$
 gives x ; and $b = 1, a = 0$ gives x^2 . Now, why basis?

(spanning set:) the lin.comb. with coefficients a, b gives the general $ax + bx^2$ above.

(linearly independent:) Setting that lin.comb., namely $ax + bx^2$, equal to 0 forces a = b = 0.

(b) Find the change-of-basis matrix (transition matrix)

from old basis given by the standard basis $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to the new basis given by $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

(You need to find coordinates of the old basis in terms of the new basis.)

Directly: just solve $\begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ to get the two columns of $\begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$.

Or: invert the transition matrix in the other ("easy") direction: $\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$.