Prof. S. Smith: Fri 3 March 2000

Problem 1: (a) Using Gauss-Jordan, find the row-reduced echelon form of the following aug-

mented matrix:
$$(A|b) = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 2 & -1 & 1 & 3 \\ 4 & -3 & 1 & 1 \end{pmatrix}$$
.

$$Use \ row \ operations \overset{A_{2}^{-2\times1}}{\to} \overset{A_{3}^{-4\times1}}{\to} \left(\begin{array}{ccc|c} 1 & -1 & 0 & -1 \\ 0 & 1 & 1 & 5 \\ 0 & 1 & 1 & 5 \end{array} \right) \overset{A_{1}^{1\times2}}{\to} \overset{A_{3}^{-1\times2}}{\to} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 4 \\ 0 & 1 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

(b) Then give the solutions of the corresponding linear system Ax = bSo solutions are (4 - r, 5 - r, r) for free variable $x_3 = r$.

Problem 2: (a) Give the *LU*-decomposition of the matrix $A = \begin{pmatrix} 1 & 1 \\ 3 & 7 \end{pmatrix}$.

Use $A_2^{-3\times 1}$ to get $U=\begin{pmatrix} 1 & 1 \\ 0 & 4 \end{pmatrix}$; and then the inverse of that operation gives $L=\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$

(b) Find the inverse (by any method) of the matrix $A = \begin{pmatrix} 11 & 2 \\ 6 & 1 \end{pmatrix}$,

Quickly, by classical-adjoint method: $A^{-1} = -\begin{pmatrix} 1 & -2 \\ -6 & 11 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 6 & -11 \end{pmatrix}$,

Problem 3: (a) Find the determinant of: $A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 5 & 2 \\ 6 & 4 & 0 \end{pmatrix}$.

Down 2nd column: (-2)(1.4 - 6.2) = 16.

(b) Use Cramer's rule to solve $\begin{pmatrix} 1 & 2 & | & 4 \\ 1 & 5 & | & 2 & | \end{pmatrix}$. $\det(A) = 1.5 - 1.2 = 3, \text{ so } x_1 = \frac{1}{3}(4.5 - 2.2) = \frac{16}{3} \text{ and } x_2 = \frac{1}{3}(1.2 - 1.4) = -\frac{2}{3}.$

Problem 4: (a) In the space \mathcal{P}_4 of polynomials of degree at most 3, let S be the subSET of polynomials of degree at most 2 (that is, of form $a + bx + cx^2$ for a, b, c real numbers). Show that S is a subSPACE of \mathcal{P}_4 .

(+)Add two general polynomials in S: $(a+bx+cx^2)+(d+ex+fx^2)=(a+d)+(b+e)x+(c+f)x^2$; the result still has degree ≤ 2 , so is also in S.

(sc.mult.) Multiply general polynomial in S by scalar d: $d(a+bx+cx^2) = da + (db)x + (dc)x^2$; the result still has degree ≤ 2 , so is also in S.

(b) Are the columns of $A = \begin{pmatrix} 1 & 1 & 3 & 0 \\ 2 & 1 & 5 & 1 \\ 1 & 1 & 3 & 0 \end{pmatrix}$ a spanning set for \mathbf{R}^3 ? (Show why/why not).

No. One way: row-reduce to $\begin{pmatrix} 1 & 1 & 3 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Only 2 pivots, so $\dim(\text{col.space}) = 2$, which is less than the dimension 3 of \mathbb{R}^3 .

Problem 5: (a) Find a basis for the nullspace of the matrix $A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 3 & 5 \end{pmatrix}$.

General solution: $(-2a+b, -3a-5b, a, b)^T$.

Choosing a = 1, b = 0 gives $(-2, -3, 1, 0)^T$, choosing a = 0, b = 1 gives $(1, -5, 0, 1)^T$.

(Now CHECK this is a basis...this works out easily...)

(b) Find the matrix of transition from the "old" basis given by the standard basis of \mathbf{R}^2 (namely $(1,0)^T$ and $(0,1)^T$) to the "new" basis given by $(1,1)^T$ and $(1,-1)^T$.

One way: The matrix $[new]_{old}$ is given by $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$,

so the transition matrix $[old]_{new}$ from old to new is given by its inverse, namely $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$.

What are the coordinates of $(4,6)^T$ in this new basis?

One way: Multiply transition matrix by old coordinates $(4,6)^T$ to get new coordinates $(5,-1)^T$.