Math 310: Hour Exam 1

Prof. S. Smith: Wed 2 March 2005

(Solutions)

**Problem 1:** (a) Using Gauss-Jordan elimination, find the row-reduced echelon form of the fol-

lowing augmented matrix:  $(A|b) = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 2 \end{pmatrix}$ . Show the STEPS you use.

$$\stackrel{A_3^{-1\times 1}}{\to} \left(\begin{array}{ccc|c} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{array}\right) \stackrel{A_1^{-1\times 2}A_3^{1\times 2}}{\to} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

(b) Using your answer in (a), give all SOLUTIONS (if any) of the linear equation system Ax = b determined by the augmented matrix (A|b).

Notice columns 3 has no pivot, so that variable is free.

Then infinite number of solutions:  $(2 - \alpha, -\alpha, \alpha)^T$  for all real  $\alpha$ .

**Problem 2:** (a) Find the *LU*-decomposition (show STEPS) of the matrix  $A = \begin{pmatrix} 2 & 3 \\ 4 & 11 \end{pmatrix}$ .

To row-reduce (Gaussian elimination) we apply  $A_2^{-2\times 1}$  to obtain  $\begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$  as U, and take as L the inverse of the matrix for  $A_2^{-2\times 1}$ , namely  $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ 

(b) Use the row-operations method (show STEPS) to find the inverse of the matrix  $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$ .  $\begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 5 & 0 & 1 \end{pmatrix} \xrightarrow{A_2^{-3\times 1}} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -1 & -3 & 1 \end{pmatrix} \xrightarrow{M_{-1}\times 2} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 3 & -1 \end{pmatrix} \xrightarrow{A_1^{-2\times 2}} \begin{pmatrix} 1 & 0 & -5 & 2 \\ 0 & 1 & 3 & -1 \end{pmatrix}$ 

so 
$$A^{-1} = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$$

**Problem 3:** (a) Use Cramer's rule to solve the system with augmented matrix  $(A|b) = \begin{pmatrix} 2 & 1 & 4 \\ 3 & 1 & 5 \end{pmatrix}$ .

$$\det A = -1$$
, so  $x_1 = \det \begin{pmatrix} 4 & 1 \\ 5 & 1 \end{pmatrix} / -1 = 1$  and  $x_2 = \det \begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix} / -1 = 2$ .

(b) Let S be the subSET of  $\mathbf{R}^3$  consisting of all 3-vectors  $(x_1, x_2, x_3)^T$  which satisfy the condition  $x_2 = 2x_3$ . Show that S is a subSPACE of  $\mathbf{R}^3$ .

Vectors in S have the general form form  $(a, 2b, b)^T$ .

(closure, +) Take two general vectors in S:  $(a, 2b, b)^T$ ,  $(c, 2d, d)^T$  and add; their sum is  $(a+c, 2b+2d, b+d)^T = (a+c, 2(b+d), b+d)^T$ , which is also in S.

(closure, sc.mult.) For a general scalar c, and general vector  $(a, 2b, b)^T$  in S, the scalar multiple is  $(ac, (2b)c, bc)^T = (ac, 2(bc), bc)^T$ , which is also in S.

**Problem 4:** (a) Do the vectors  $v_1 = (1,0,1)^T$ ,  $v_2 = (0,2,0)^T$ ,  $v_3 = (3,-2,3)^T$  span  $\mathbb{R}^3$ ? (Why/why not?)

NO: (short) Notice  $v_3 = 3v_1 - 2v_2$ ; so their span is 2-dimensional, but  $\mathbf{R}^3$  is 3-dimensional.

(longer) Put the  $v_i$  as columns of a matrix augmented by a general vector  $(a, b, c)^T$ .  $\begin{pmatrix} 1 & 0 & 3 & a \\ 0 & 2 & -2 & b \\ 1 & 0 & 3 & c \end{pmatrix}$ 

Row-reduce to  $\begin{pmatrix} 1 & 0 & 3 & a \\ 0 & 1 & -1 & \frac{b}{2} \\ 0 & 0 & 0 & c-a \end{pmatrix}$  and see NOT solvable for every a, b, c (only for c=a)

(b) Recall that  $\mathcal{P}_3$  is the space of polynomials of degree less than three (i.e., quadratic polynomials). Are the three "vectors" 1, 1+x,  $1+x+x^2$  linearly independent in this space? (Why/why not?)

YES: Set an unknown linear combination equal to 0:

$$a(1) + b(1+x) + c(1+x+x^2) = 0 = 0.1 + 0.x + 0.x^2$$
.

Get an equation for each power of x:

(1:) 
$$a + b + c = 0$$

$$(x:) b + c = 0$$

$$(x^2:) c = 0$$

and check that we get only the zero solution 
$$a = b = c = 0$$
.

E.g.,  $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$  has row-reduced echelon form  $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ .

**Problem 5:** (a) Find a basis for the subspace S of  $\mathbb{R}^{2\times 2}$  given by the upper triangular matrices. What is the dimension of S? (Say WHY your choice is a basis.)

A general upper triangular matrix has form  $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ .

So choosing a, b, c successively in the "standard basis" way, we get 3 "vectors" in a basis:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
,  $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ ,  $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ . So dim  $S = 3$ .

Why basis? (spanning set:) the linear combination of these with coefficients a, b, c gives the general matrix A above.

(linearly independent:) Setting that linear combination equal to the zero-matrix gives only the zero solution a = b = c = 0.

(b) Find the coordinates of the vector  $(7,4)^T$  in the basis of  $\mathbf{R}^2$  given by  $(1,2)^T$  and  $(3,5)^T$ . Solve  $\begin{pmatrix} 1 & 3 & 7 \\ 2 & 5 & 4 \end{pmatrix}$  to get  $(-23,10)^T$ .

Solve 
$$\begin{pmatrix} 1 & 3 & 7 \\ 2 & 5 & 4 \end{pmatrix}$$
 to get  $(-23, 10)^T$