(Solutions)

Prof. S. Smith: Fri 19 Feb 1999

Problem 1:

(a) Using Gauss-Jordan, find the row-reduced echelon form of the following augmented matrix. (INDICATE the row operations you use).

$$(A|b) = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix}.$$

$$\stackrel{A_{2}^{-2\times1},A_{3}^{-3\times1}}{\to} \left(\begin{array}{ccc|c} 1 & 4 & 7 & 10 \\ 0 & -3 & -6 & -9 \\ 0 & -6 & -12 & -18 \end{array} \right) \stackrel{M^{-\frac{1}{3}\times2}}{\to} \left(\begin{array}{ccc|c} 1 & 4 & 7 & 10 \\ 0 & 1 & 2 & 3 \\ 0 & -6 & -12 & -18 \end{array} \right) \stackrel{A_{1}^{-4\times2},A_{3}^{6\times2}}{\to} \left(\begin{array}{ccc|c} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

(b) Then give the solutions of the corresponding linear system Ax = b. So solutions are (-2 + r, 3 - 2r, r) for free variable $x_3 = r$.

Problem 2: (a) Given matrices

$$A = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & 4 \\ 0 & -4 \end{pmatrix} \quad ,$$

find an elementary 2×2 row matrix E such that left multiplication by E will convert A to B: that is, EA = B.

row operation $A_2^{-3\times 1}$: add -2 times 1st row to 2nd.

So use $E = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$: (obtained by doing that operation to the identity matrix).

(b) Give the LU-decomposition of

$$A = \left(\begin{array}{cc} 2 & 4 \\ 6 & 8 \end{array}\right);$$

that is, find lower-triangular L and upper-triangular U, so that A = LU.

As in (a)
$$A_2^{-3\times 1}$$
 to get $U = \begin{pmatrix} 2 & 4 \\ 0 & -4 \end{pmatrix}$. So L from inverse operation $A_2^{+3\times 1}$ is $\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$

Problem 3: (a) Suppose a population is initially evenly distributed between two states, as represented by the column vector $v = (.5, .5)^T$. Assume the distribution vector after one time unit is given by Av, where A is the transition matrix $\begin{pmatrix} 1 & .5 \\ 0 & .5 \end{pmatrix}$. Compute A^2 , and give the distribution vector after 2 time units.

vector after 2 time units.
$$A^2 = \begin{pmatrix} 1 & .5 \\ 0 & .5 \end{pmatrix} \begin{pmatrix} 1 & .5 \\ 0 & .5 \end{pmatrix} = \begin{pmatrix} 1 & .75 \\ 0 & .25 \end{pmatrix}$$
, so $A^2v = A(Av) = \begin{pmatrix} 1 & .75 \\ 0 & .25 \end{pmatrix} \begin{pmatrix} .5 \\ .5 \end{pmatrix} = \begin{pmatrix} .875 \\ .125 \end{pmatrix}$.

(b) Find the determinant of

$$A = \left(\begin{array}{ccc} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 1 & 0 & 1 \end{array}\right).$$

Via top row: 1(4.1 - 0.1) - 5(2.1 - 1.(-1)) + 0 = 1(4) - 5(3) = -11.

Problem 4:

(a) Find the inverse (any method) of:

$$A = \left(\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{array}\right).$$

Using classcal-adjoint method:

$$\det(A) = 6 \text{ (triangular) and matrix of cofactors is } \begin{pmatrix} 2 & 0 & 0 \\ 2 & 6 & 0 \\ -1 & -9 & 3 \end{pmatrix} \text{ so } A^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 2 & -1 \\ 0 & 6 & -9 \\ 0 & 0 & 3 \end{pmatrix}$$

(b) Given matrices
$$A = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$$
 and $Y = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$, and also $A^{-1} = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$

 $\begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}$; solve the matrix equation Y = AX + B—that is, find the 2×2 matrix X.

We see
$$X = A^{-1}(Y - B) = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} -4 & -4 \\ 6 & 6 \end{pmatrix}$$

Problem 5: (a) Is (7, 4, -2) in the span of (1, -2, -5) and (2, 5, 6)?

Either give coefficients in a linear combination, or explain why it is not possible.

(No): Set up augmented matrix
$$(A|b) = \begin{pmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -2 \end{pmatrix}$$
. Row operations $A_2^{2\times 1}$ and $A_3^{5\times 1}$ give

$$\left(\begin{array}{cc|c} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 16 & 33 \end{array} \right). \ Now \ M_{\frac{1}{9} \times 2} \ gives \left(\begin{array}{cc|c} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 16 & 33 \end{array} \right). \ And \ then \ A_3^{-16 \times 2} \ gives \left(\begin{array}{cc|c} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right).$$

So it is not possible to find coefficients in a linear combination, and then the indicated vector is not in the span. (There are other ways of solving this problem...)

(b) Let \mathcal{P}_4 be the space of polynomials of degree less than 4, and W the subSET of polynomials of form $a + bx + (a + b)x^2$ (for all real numbers a, b).

Show that W is a subSPACE of \mathcal{P}_4 .

Shortcut: notice W is just the span of $1 + x^2$ and $x + x^2$, and the span of a set of vectors is always a subspace.

For the full method: add general vectors $a + bx + (a + b)x^2$ and $c + dx + (c + d)x^2$ from W to get $(a + c) + (b + d)x + (a + b + c + d)x^2$. We see the coefficient for x^2 is the sum of those for 1 and x, so the sum is also in W.

Similarly a scalar multiple $f(a+bx+(a+b)x^2=fa+(fb)x+(fa+fb)x^2$. Again the coefficient for x^2 is the sum of those for 1 and x, so the scalar multiple is also in W.

We have closure under both operations, so W is a subspace.