Prof. S. Smith: Fri 10 Nov 2000

You must SHOW WORK to receive credit.

Wherever you use a calculator, write "used calculator".

Problem 1:

(a) Give the matrix A representing (in the standard basis) the linear transformation

$$L: \mathbf{R}^2 \to \mathbf{R}^2$$
 defined by $L((x_1, x_2)^T) = (3x_1 - x_2, x_1 + 2x_2)^T$.

Apply L to standard basis, put into columns to get
$$A = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

(b) Now give the matrix B for the same L as in part (a), but using the basis $(1,1)^T$, $(1,2)^T$. Either compute directly with respect to this "new" basis; or use change-of-basis matrix

from "new" to "old" basis given by
$$S = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, and mutliply out $B = S^{-1}AS$:

$$\begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Problem 2: (a) The formula $\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x) dx$ defines an inner product on the space $\mathcal{P}_{\leq 2}$ of polynomials of degree less than 2. Show that the functions 1 and x are orthogonal in this inner product. Determine the length ||1|| for the function 1 in this inner product.

$$\langle 1, x \rangle = \int_{-1}^{1} 1.x \ dx = \left[\frac{x^2}{2}\right]_{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0$$
, as desired.

$$\langle 1, 1 \rangle = \int_{-1}^{1} 1.1 \ dx = [x]_{-1}^{1} = 1 - (-1) = 2, \text{ so } ||1|| = \sqrt{2}.$$

(b) Find a basis for the orthogonal complement to the row space of
$$A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 1 & 3 \end{pmatrix}$$
.

By Thm 5.2.1 this is just the nullspace of A. Compute $rref(A)$: $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

Then variables x_3 , x_4 are free, so solutions are $(-x_3, -x_4, x_3, x_4)$. Choosing the free variables in the "standard basis" way, a basis is given by the two vectors (-1,0,1,0) and (0,-1,0,1).

Problem 3:

(a) Find all solutions of the system Ax = b given by:

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}.$$

The row-reduced echelon form of the augmented matrix
$$[A|b]$$
 is: $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

The second row says 0 = 1, so there are no solutions.

(b) Find the projection p of b into the column space of A.

This is "least squares": Multiply A^T by the augmented matrix [A|b] to get normal equations

This is "least squares": Multiply
$$A^2$$
 by the augmented matrix $[A|b]$ to get norm
$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 2 \\ -1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 12 & 6 \\ 12 & 24 & 12 \end{pmatrix}.$$
 Compute rref: $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

There are an infinite number of solutions for \hat{x} , of form $(1-2x_2,x_2)^T$; easiest to take $x_2 = 0$, so $\hat{x} = (1,0)^T$. Then $p = A\hat{x} = (1,2,-1)^T$.

Problem 4:

(a) Let S be the subspace of \mathbb{R}^3 (let's use row vectors for convenience) spanned by $v_1 = (1, 1, 0)$ and $v_2 = (0, 1, 1)$. Use the Gram-Schmidt process to find an orthonormal basis for S.

First get orthogonal: use $q_1 = v_1 = (1, 1, 0)$ and then

$$q_2 = v_2 - [(v_2 \cdot q_1)/(q_1 \cdot q_1)]q_1 = (0, 1, 1) - [1/2](1, 1, 0) = (-1/2, 1/2, 1).$$

To make orthoNORMAL, divide by lengths to get $u_1 = \frac{1}{\sqrt{2}}(1,1,0)$ and $u_2 = \frac{1}{\sqrt{6}}(-1,1,2)$.

(b) Now give the projection p of b = (1, 1, 1) in the space S of part (a).

Could do by least squares; or, as in Thm 5.5.7:

$$p = (u_1 \cdot b)u_1 + (u_2 \cdot b)u_2 = \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} (1, 1, 0) + \frac{2}{\sqrt{6}} \frac{1}{\sqrt{6}} (-1, 1, 2) = (1, 1, 0) + \frac{1}{3} (-1, 1, 2) = \frac{2}{3} (1, 2, 1).$$

Problem 5:

(a) The "trace" of a 2×2 matrix A is the sum of the elements on its main diagonal, namely $Tr(A) = A_{1,1} + A_{2,2}$. Show that the trace function Tr is a linear transformation on $\mathbf{R}^{2\times 2}$ (the image space is just scalars \mathbf{R}).

(+)
$$Tr(A+B) = (A+B)_{1,1} + (A+B)_{2,2} = (A_{1,1}+B_{1,1}) + (A_{2,2}+B_{2,2})$$

= $(A_{1,1}+A_{2,2}) + (B_{1,1}+B_{2,2}) = Tr(A) + Tr(B)$.

(Or, you can write out general 2×2 matrices in full).

(sc.mult.)
$$Tr(cA) = (cA)_{1,1} + (cA)_{2,2} = cA_{1,1} + cA_{2,2} = c(A_{1,1} + A_{2,2}) = cTr(A)$$
.

(b) Suppose A is a 3×5 matrix, and L is the usual linear transformation from \mathbb{R}^5 to \mathbb{R}^3 given by left multiplication: L(x) = Ax. If A has rank 3, what is the dimension of the kernel of L? Why?

The kernel of L is just the nullspace N(A) of A, so its dimension is the nullity of A.

Then (by Thm 3.6.4)
$$\#(cols\ of\ A) = 5 = rank(A) + nullity(A)$$
, so $nullity(A) = 2$.