Math 310: Hour Exam 2

(Solutions)

Prof. S. Smith: Fri 17 Nov 2006

You must SHOW WORK to receive credit.

WHEREVER you use a calculator, write "used calculator".

Problem 1:

(a) Give the matrix (with respect to the STANDARD basis) for the linear transformation

$$L: \mathbf{R}^2 \to \mathbf{R}^2$$
 defined by $L\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_1 + 2x_2 \\ 3x_1 - x_2 \end{pmatrix}$.

Apply L to the standard basis:
$$L\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} -1\\3 \end{pmatrix}$$
 and $L\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 2\\-1 \end{pmatrix}$,

to get the columns of the matrix for the transformation $\begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix}$.

(b) Now give the matrix for the same linear transformation L as in part (a), but

with respect to the basis
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$,

Shortcut method: for A the matrix of (a), with change-of-basis matrix $S = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$,

compute
$$S^{-1}AS = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 15 & 25 \\ -10 & -17 \end{pmatrix}$$

(Or, "directly" as in (a)—columns now from COORDINATES of images in new basis...)

Problem 2:

(a) On the space \mathcal{P}_3 of polynomials of degree at most 2, show that the transformation defined by L(p(x)) = x p'(x) is LINEAR.

(addition) Take general polynomials p(x) and q(x) from \mathcal{P}_3 .

Apply L AFTER sum: L(p(x) + q(x)) = x (p(x) + q(x))' = x p'(x) + x q'(x); now compare

L BEFORE sum: L(p(x)) + L(q(x)) = x p'(x) + x q'(x); equal to above, as desired.

(scalar multiplication) Take general $p(x) \in \mathcal{P}_3$ and scalar c.

Apply L after sc.mult.: $L(c \ p(x)) = x \ (c \ p(x))' = x \ c \ p'(x)$; now compare

L before: c L(p(x)) = c x p'(x); equal to above, as desired.

(Or: write p(x) in form $a_0 + a_1x + a_2x^2$, and q(x) as $b_0 + b_1x + b_2x^2$, and apply L as above ...)

(b) For the subspace S of \mathbf{R}^3 given by the span of the vectors $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}$,

find the orthogonal complement S^{\perp} .

Write vectors as rows of A, and compute nullspace of A:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \end{pmatrix}$$
 has rref $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, so solutions are the span of $\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$.

Problem 3:

(a) For the inconsistent system Ax = b with augmented matrix $\begin{pmatrix} -1 & -2 & 1 \\ 2 & 4 & 2 \\ 1 & -2 & 3 \end{pmatrix}$, find:

all "least squares solutions" \hat{x} ; the projection p of b in the column space of A; and the size (length) of the "error" b-p.

Multiply A^T by the augmented matrix [A|b] to get normal equations

$$\begin{pmatrix} -1 & 2 & 1 \\ -2 & 4 & -2 \end{pmatrix} \begin{pmatrix} -1 & -2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 8 & 6 \\ 8 & 24 & 0 \end{pmatrix}. Compute ref: \begin{pmatrix} 1 & 0 & \frac{9}{5} \\ 0 & 1 & -\frac{3}{5} \end{pmatrix}.$$

Thus
$$\hat{x} = \begin{pmatrix} \frac{9}{5} \\ -\frac{3}{5} \end{pmatrix}$$
; so $p = A\hat{x} = \begin{pmatrix} -1 & -2 \\ 2 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} \frac{9}{5} \\ -\frac{3}{5} \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} \\ \frac{6}{5} \\ 3 \end{pmatrix}$;

with error
$$b-p=\begin{pmatrix}1\\2\\3\end{pmatrix}-\begin{pmatrix}-\frac{3}{5}\\\frac{6}{5}\\3\end{pmatrix}=\begin{pmatrix}\frac{8}{5}\\\frac{4}{5}\\0\end{pmatrix}$$
 of length $\sqrt{\frac{80}{25}}=\frac{4}{\sqrt{5}}$.

(b) In the space of differentiable functions on [0,1], with inner product $\langle f,g\rangle=\int_0^1 f(x)g(x)\ dx$, find the vector projection of x on the function x^2 .

The vector projection formula gives $\frac{\langle x, x^2 \rangle}{\langle x^2, x^2 \rangle} x^2$.

So compute
$$\langle x, x^2 \rangle = \int_0^1 x \cdot x^2 dx = \int_0^1 x^3 dx = \left[\frac{x^4}{4} \right]_0^1 = \frac{1}{4}$$
 and $\langle x^2, x^2 \rangle = \int_0^1 x^2 \cdot x^2 dx = \int_0^1 x^4 dx = \left[\frac{x^5}{5} \right]_0^1 = \frac{1}{5}$,

to get $\frac{1}{4} = \frac{5}{4}$ times the function x^2 ; that is, the projection is $\frac{5}{4}x^2$.

Problem 4:

(a) With inner product space given \mathbb{R}^2 and the standard dot product,

find the coordinates of the vector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ in the orthonormal basis given by $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Just take dot products with the basis, to get coordinates: $\begin{pmatrix} \frac{3}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$.

(b) In the space of differentiable functions on [-1,1], with inner product $\langle f,g\rangle=\int_{-1}^1 f(x)g(x)\ dx$, the functions 1 and x are orthogonal (given!). Find the projection of $x^{\frac{1}{3}}$ on the span of 1 and x.

2

Since 1 and x are orthogonal, the projection formula is $\frac{\langle x^{\frac{1}{3}}, 1 \rangle}{\langle 1, 1 \rangle} 1 + \frac{\langle x^{\frac{1}{3}}, x \rangle}{\langle x, x \rangle} x$. So compute

$$\langle 1, 1 \rangle = \int_{-1}^{1} 1 \cdot 1 \ dx = \int_{-1}^{1} 1 \ dx = [x]_{-1}^{1} = 2;$$

$$\langle x, x \rangle = \int_{-1}^{1} x \cdot x \, dx = \int_{-1}^{1} x^{2} \, dx = \left[\frac{x^{3}}{3} \right]_{-1}^{1} = \frac{2}{3};$$

$$\langle x^{\frac{1}{3}}, 1 \rangle = \int_{-1}^{1} x^{\frac{1}{3}} \cdot 1 \ dx = \int_{-1}^{1} x^{\frac{1}{3}} \ dx = \left[\frac{3}{4} x^{\frac{4}{3}} \right]_{-1}^{1} = 0;$$

$$\langle x^{\frac{1}{3}}, x \rangle = \int_{-1}^{1} x^{\frac{1}{3}} \cdot x \, dx = \int_{-1}^{1} x^{\frac{4}{3}} \, dx = \left[\frac{3}{7}x^{\frac{7}{3}}\right]_{-1}^{1} = \frac{6}{7}.$$

So the projection is $\frac{0}{2}1 + \frac{\frac{9}{2}}{\frac{2}{3}}x = \frac{9}{7}x$.

Problem 5:

(a) Apply the Gram-Schmidt process (SHOW steps) to find an orthonormal basis for the column space of $A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$. Then give the QR-factorization of A.

For orthogonal, use $q_1 = v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and then $q_2 = v_2 - \frac{v_2 \cdot q_1}{q_1 \cdot q_1} q_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} - \frac{7}{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. To make orthoNORMAL, divide by lengths to get $u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Thus $Q = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$ and can obtain R as $Q^T A = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 5 & 7 \\ 0 & 1 \end{pmatrix}$.

(b) In the space of differentiable functions on [-1,1], with inner product $\langle f,g\rangle=\int_{-1}^1 f(x)g(x)\ dx$, find an orthogonal (but not necessarily orthonormal) basis for the subspace spanned by 1 and x^2 . (That is, you need not divide by lengths at the end, to get unit vectors).

Here we take $q_1 = v_1 = 1$; and $q_2 = v_2 - \frac{\langle v_2, q_1 \rangle}{\langle q_1, q_1 \rangle} q_1 = x^2 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} 1$.

So we need to compute $\langle x^2, 1 \rangle = \int_{-1}^1 x^2 \cdot 1 \, dx = \int_{-1}^1 x^2 \, dx = \left[\frac{x^3}{3} \right]_{-1}^1 = \frac{2}{3}$; we had already computed (1,1) = 2 in Problem 4b.

So we get q_2 given by $x^2 - \frac{\frac{2}{3}}{2}1 = x^2 - \frac{1}{3}$, and this will be orthogonal to 1. So 1 and $x^2 - \frac{1}{3}$ are an orthogonal basis for the span of 1 and x^2 .