Math 310: Hour Exam 2

(Solutions)

Prof. S. Smith: Fri 8 Apr 2005

You must SHOW WORK to receive credit.

WHEREVER you use a calculator, write "used calculator".

Problem 1:

(a) Give the matrix (with respect to the STANDARD basis) for the linear transformation

$$L: \mathbf{R}^2 \to \mathbf{R}^2$$
 defined by $L((x_1, x_2)^T) = (2x_1 - x_2, x_1 + 3x_2)^T$,

Apply L to the standard basis: $L((1,0)^T) = (2,1)^T$; $L((0,1)^T) = (-1,3)^T$.

These are coordinates in the standard basis, so put in columns, to get $\begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$.

(b) Now give the matrix for the same linear transformation L as in part (a), but with respect to the basis $(1,2)^T$, $(1,3)^T$.

Shortcut method: for A the matrix of (a) with change-of-basis matrix $S = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$,

compute
$$S^{-1}AS = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} -7 & -13 \\ 7 & 12 \end{pmatrix}$$

(Or, can compute "directly" as in (a)—but getting coordinates in NEW basis...)

Problem 2:

(a) Show that the transpose gives a linear transformation on the matrix space $\mathbf{R}^{2\times 2}$ (that is, the function L given by $L(A) = A^T$ for a matrix A)

(that is, the function L given by $L(A) = A^T$ for a matrix A). (addition) $L(A+B) = (A+B)^T = A^T + B^T$ while $L(A) + L(B) = A^T + B^T$, so equal. (sc.mult.) $L(cA) = (cA)^T = cA^T$ while $cL(A) = cA^T$, so equal.

(Or: can write out 2×2 matrices in full, and SHOW the transposing...)

(b) For the subspace S of \mathbb{R}^3 given by the span of the vectors $(1,1,2)^T$ and $(1,2,4)^T$, find the orthogonal complement S^{\perp} .

Write vectors as rows of A, and compute nullspace of A:

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$
 has rref $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$, so solutions are the span of $(0, -2, 1)^T$.

Problem 3:

(a) For the inconsistent system Ax = b with augmented matrix: $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 2 \\ -1 & -2 & 1 \end{pmatrix}$, find all

"least squares solutions" \hat{x} ; the projection p of b in the column space of A; and the residual (error). Multiply A^T by the augmented matrix [A|b] to get normal equations

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 2 \\ -1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 12 & 6 \\ 12 & 24 & 12 \end{pmatrix}. Compute ref: \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Thus
$$\hat{x} = (1 - 2\alpha, \alpha)^T$$
, so $p = A\hat{x} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 1 - 2\alpha \\ \alpha \end{pmatrix} = (1, 2, -1)^T$;

with residual vector $b - p = (3, 2, 1)^T - (1, 2, -1)^T = (2, 0, 2)^T$ (of size $\sqrt{8}$).

(b) In the space of differentiable functions on [0, 1], with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x) \ dx$, find the vector projection of x on the constant function 1.

Projection formula is $\frac{\langle x,1\rangle}{\langle 1,1\rangle}1$.

So compute $\langle x,1\rangle=\int_0^1 x\cdot 1\ dx=[\frac{x^2}{2}]_0^1=\frac{1}{2}$ and $\langle 1,1\rangle=\int_0^1 1\cdot 1\ dx=[x]_0^1=1$, to get $\frac{1}{2}$ times the constant function 1.

Problem 4:

(a) With the standard dot product on \mathbb{R}^2 , find the coordinates of the vector $(2,1)^T$ in the orthonormal basis given by $(\frac{3}{5}, \frac{4}{5})^T$, $(-\frac{4}{5}, \frac{3}{5})^T$.

Just take dot products with the basis, to get coordinates: $(2,-1)^T$.

(b) Give the matrix P for projection into the subspace S of \mathbb{R}^3 spanned by $(2,2,1)^T$ and $(-2,1,2)^T$. We need UU^T where the columns of U are an orthonormal basis for S. The two vectors are already orthogonal, and have length 3.

So for A given by those columns,
$$U = \frac{1}{3}A$$
, and $P = \frac{1}{9}AA^T = \frac{1}{9}\begin{pmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{pmatrix}$

Problem 5:

(a) Let S be the subspace of \mathbf{R}^3 spanned by $v_1 = (2,2,1)^T$ and $v_2 = (2,1,0)^T$. Use the Gram-Schmidt process to find an orthonormal basis for S; and give an orthonormal basis for S^{\perp} .

First get orthogonal: use
$$q_1 = v_1 = (2, 2, 1)^T$$
 and then $q_2 = v_2 - \frac{v_2 \cdot q_1}{q_1 \cdot q_1} q_1 = (2, 1, 0)^T - \frac{6}{9} (2, 2, 1)^T = \frac{1}{3} (2, -1, -2)^T$.

To make orthoNORMAL, divide by lengths to get $u_1 = \frac{1}{3}(2,2,1)^T$ and $u_2 = \frac{1}{3}(2,-1,-2)^T$. For S^{\perp} , it suffices to work with integer vectors;

convert columns to rows $\begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \end{pmatrix}$ and compute rref as $\begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & 1 \end{pmatrix}$; so S^{\perp} is the span of $(\frac{1}{2}, -1, 1)^T$; divide by length to get orthonormal basis $\frac{1}{3}(1, -2, 2)^T$.

(b) Give the QR-factorization of the matrix $A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$.

Apply Gram-Schmidt as in (a) to the columns of A to get $Q = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$

and can obtain R as $Q^T A = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 5 & 7 \\ 0 & 1 \end{pmatrix}$.