Math 310: Final Exam

(Solutions)

Prof. S. Smith: Wed 10 Dec 1997

You must SHOW WORK to receive credit.

Problem 1: Let $A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$.

- (a) Find the eigenvalues of A. (Hint: they are small, positive integers, including 1). $\det(A xI) = -x(x^2 5x + 6 2) + 1(6 2x 2) 1(4 (4 2x)) = -x^3 + 5x^2 8x + 4 = -(x 1)(x^2 4x + 4) = -(x 1)(x 2)^2$, so values 1, 2, 2.
- (b) Find the eigenspaces for those eigenvalues.

For 1:
$$A - I = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ 2 & 2 & -1 \end{pmatrix}$$
 via $A_{2,3}^{-1 \times 1} \begin{pmatrix} 2 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ so solutions $a(\frac{1}{2}, 0, 1)^T$.
For 2: $A - 2I = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 2 & -2 \end{pmatrix}$ via $A_{2,3}^{-2 \times 1} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ so solutions $b(\frac{1}{2}, \frac{1}{2}, 1)^T$.

(c) Is A diagonalizable? Why/why not? If so, find X with $X^{-1}AX$ diagonal. No: 2 is an eigenvalue twice, but only one dimension of 2-eigenvectors.

Problem 2: Consider the differential equation system (functions of t): $\begin{pmatrix} y'_1 & = & 2y_2 \\ y'_2 & = & 3y_1 & -y_2 \end{pmatrix}$.

I GIVE you that
$$X^{-1}AX = D$$
 where $A = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$, $X = \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$, $D = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$.

(a) Give the general solution of the system (with undetermined constants c_1, c_2).

$$c_1\begin{pmatrix} 1\\1 \end{pmatrix}e^{2t}+c_2\begin{pmatrix} 2\\-3 \end{pmatrix}e^{-3t}$$
 so $y_1=c_1e^{2t}+2c_2e^{-3t}$ and $y_2=c_1e^{2t}-3c_2e^{-3t}$.

(b) Now determine the particular solution (values of c_1, c_2) for the initial value problem $y_1(0) = 5$, $y_2(0) = -5$.

Solve
$$\begin{pmatrix} 1 & 2 & 5 \\ 1 & -3 & -5 \end{pmatrix}$$
 to get $c_1 = 1, c_2 = 2$.

Problem 3: Let A be the Markov matrix $\begin{pmatrix} \frac{1}{2} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}$.

- (a) Find the eigenvalues and eigenvectors of A. Indicate the "steady-state" vector. $\det(A-xI)=x^2-\frac{5}{6}x-\frac{1}{6}+\frac{2}{6}=x^2-\frac{5}{6}x+\frac{1}{6}=(x-1)(x+\frac{1}{6})$ so values $1,-\frac{1}{6}$. Corresponding eigenvectors $a(4,3)^T$ and $b(-1,1)^T$. Steady-state is $(\frac{4}{7},\frac{3}{7})^T$.
- (b) Write $A = XDX^{-1}$ with D diagonal—and then get a formula for the power A^m .

We can use
$$X = \begin{pmatrix} 4 & -1 \ 3 & 1 \end{pmatrix}$$
 so $X^{-1} = \frac{1}{7} \begin{pmatrix} 1 & 1 \ -3 & 4 \end{pmatrix}$
so $A^m = XD^m X^{-1} = \frac{1}{7} \begin{pmatrix} 4 + 3(-\frac{1}{6})^m & 4 - 4(-\frac{1}{6})^m \ 3 - 3(-\frac{1}{6})^m & 3 + 4(-\frac{1}{6})^m \end{pmatrix}$

Problem 4: Let A be the symmetric matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

I GIVE you that the eigenvalues of A are 2, -1, -1.

(a) Find an orthonormal basis for each eigenspace.

For 2: eigenvectors are $a(1,1,1)^T$, so use $\frac{1}{\sqrt{3}}(1,1,1)^T$.

For -1: Get eigenvectors $(-b-c,b,c)^T$. Start with basis like $(-1,1,0)^T$ and $(-1,0,1)^T$. Apply Gram-Schmidt to get $\frac{1}{\sqrt{2}}(-1,1,0)^T$ and $\frac{1}{\sqrt{6}}(1,1,-2)^T$. (b) Now find an orthogonal matrix X (that is, $X^{-1} = X^T$) with $X^{-1}AX$ diagonal.

From (a) can use
$$X = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \end{pmatrix}$$
.

Problem 5:

(a) Give the (symmetric) matrix for the quadratic form $x_1^2 - 2x_1x_3 + 2x_2^2 + 4x_2x_3 + 6x_3^2$ Indicate new variables in which the form is diagonal. Is it positive definite?

$$\left(\begin{array}{rrr} 1 & 0 & -1 \\ 0 & 2 & 2 \\ -1 & 2 & 6 \end{array}\right).$$

Completing squares, we see $(x_1 - x_3)^2 + 2(x_2 + x_3)^2 + 3x_3^2$.

These give new diagonalizing variables; all with positive coefficient, so positive definite.

(b) Write the matrix of (a) in the form LDL^T with L lower triangular, and D diagonal.

Operations
$$A_3^{1\times 1}$$
 and $A_3^{-1\times 2}$ give $U = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$

$$so \ D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right) \ and \ L^T = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right) \ and \ get \ L \ as \ (L^T)^T.$$