Math 310 (2 pm MWF):

Final Exam

(Solutions)

Prof. S. Smith (originally Prof. H. Alexander): Tues 4 May 1999

There are 6 problems, worth 20 % each (so you can get more than 100 %).

You must SHOW WORK to get credit; if by calculator, show WHERE and HOW you used it.

Problem 1: (a) (as promised, a flashback to the midterm):

Let S be the set of all lower triangular 2×2 matrices. Remember that these matrices have the general form $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$. Show that S is a subspace of the vector space $\mathbf{R}^{2\times 2}$ of all 2×2 matrices.

 $(closure, +:) \, \left(\begin{array}{cc} a & 0 \\ b & c \end{array} \right) + \left(\begin{array}{cc} d & 0 \\ e & f \end{array} \right) = \left(\begin{array}{cc} a+d & 0 \\ b+e & c+f \end{array} \right), \text{ also lower-triangular, so in } S.$

(closure, scalar mult:) $f\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} fa & 0 \\ fb & fc \end{pmatrix}$, also lower-triangular, so in S.

(b) Give the standard matrix representation for linear transformation from ${f R}^3$ to ${f R}^2$ defined by $L[(x_1, x_2, x_3)^T] = (x_1 - 3x_2 + 2x_3, 7x_2 + 3x_3)^T$. (That is, just use the standard basis for each space).

Apply L to each basis vector, and write as columns: $\begin{pmatrix} 1 & -3 & 2 \\ 0 & 7 & 3 \end{pmatrix}$

Problem 2: (a) Find the orthogonal complement S^{\perp} to the space spanned by the two vectors $(1,1,1)^T$ and $(1,0,2)^T$.

Write as rows of A: $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$. Then Ax = 0 has solutions $x_3(-2, 1, 1)^T$.

(b) Find the least-squares solution \hat{x} of the inconsistent system Ax = b given by: $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 4 \end{pmatrix}$.

Give the projection p of b in the column space of A. What is the error?

Multiply by $A^{T} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$ to get normal equations $\begin{pmatrix} 5 & 3 & 10 \\ 3 & 3 & 7 \end{pmatrix}$. Solve to get $\hat{x} = \frac{1}{6}(9,5)^{T}$. Then $p = A\hat{x} = \frac{1}{6}(5,14,23)^{T}$. And error $= b - p = \frac{1}{6}(1,-2,1)^{T}$.

Problem 3: (a) Use the Gram-Schmidt process to find an orthonomal basis for the space spanned by the two vectors $b_1 = (0, 1, 2)^T$ and $b_2 = (1, 1, 1)^T$.

(Working with rows) $x_1 = (0, 1, 2)$ and $x_2 = b_2 - \frac{x_2 \cdot x_1}{x_1 \cdot x_1} x_1 = (1, 1, 1) - \frac{3}{5} (1, 1, 1) = (1, \frac{2}{5}, -\frac{1}{5})$ so $u_1 = u_1/|u_1| = \frac{1}{\sqrt{5}}(0,1,2)$ and $u_2 = \frac{1}{\sqrt{30}}(5,2,-1)$. (b) Find the projection p of the vector $b = (1,2,3)^T$ in the 2-dimensional subspace spanned by

the vectors $b_1 = (1, -1, 0)^T$ and $b_2 = (1, 1, 1)^T$.

Many ways of solving. Easiest: note b_1 and b_2 are orthogonal.

So p has coordinates $(b \cdot b_1)/(b_1 \cdot b_1) = -\frac{1}{2}$ and similarly for b_2 to get 2. so $p = -\frac{1}{2}(1, -1, 0)^T + 2(1, 1, 1)^T = \frac{1}{2}(3, 5, 4)^T$.

Problem 4: For the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$:

(a) Find the eigenvalues of A.

 $\det(A - xI) = x^2 - 5x + 4 - 4 = x^2 - 5x = x(x - 5)$, so eigenvalues are 0, 5.

(b) For each eigenvalue, determine the corresponding eigenvectors.

 $(\lambda = 0)$ For A - 0I = A solve Ax = 0: solutions are multiples of $(-2, 1)^T$.

 $(\lambda = 5)$ solve (A - 5I)x = 0 where $A - 5I = \begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix}$ solutions are multiples of $(1, 2)^T$.

Problem 5: Given the differential equation system (y as functions of t): $\begin{pmatrix} y'_1 = y_1 + 2y_2 \\ y'_2 = 2y_1 + y_2 \end{pmatrix}$.

I GIVE you the information that eigenvalues are 3, -1; with eigenvectors are $(1,1)^T$ and $(1,-1)^T$

(a) Give the general solution of the system (with undetermined constants c_1, c_2).

 $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} c_1 e^{3t} \\ c_2 e^{-t} \end{pmatrix}, \text{ so } y_1 = c_1 e^{3t} + c_2 e^{-t} \text{ and } y_2 = c_1 e^{3t} - c_2 e^{-t}.$ (b) Now determine the values of c_1 , c_2 for the initial value problem $y_1(0) = 4$, $y_2(0) = 2$.

Solve $\begin{pmatrix} 1 & 1 & | & 4 \\ 1 & -1 & | & 2 \end{pmatrix}$ to get $c_1 = 3$, $c_2 = 1$. So $y_1 = 3e^{3t} + e^{-t}$ and $y_2 = 3e^{3t} - e^{-t}$.

Problem 6: Let A be the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. I GIVE you that the eigenvalues of A are -1, 1.

(a) Diagonalize A: that is, find the eigenvalues and eigenvectors, and give a matrix X such that $X^{-1}AX$ is a diagonal matrix D.

For 1: eigenvectors are $a(1,1)^T$, For -1: Get eigenvectors $b(1,-1)^T$. So $X = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

(b) Now let A be the symmetric matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

I GIVE you that the eigenvalues of A are -1, -1, 2; and that corresponding eigenvectors are $(1,-1,0)^T$, $(1,0,-1)^T$, and $(1,1,1)^T$. Give an orthogonal diagonalization of A:

That is, use Gram-Schmidt to find an orthonormal basis for each eigenspace. Then use that to build an orthogonal matrix X (that is, $X^{-1} = X^{T}$) with $X^{-1}AX$ diagonal.

Apply Gram-Schmidt to the -1-eigenspace to get $\frac{1}{\sqrt{2}}(1,-1,0)^T$ and $\frac{1}{\sqrt{6}}(1,1,-2)^T$.

For the 2-eigenspace, use $\frac{1}{\sqrt{3}}(1,1,1)^T$.

So can use $X = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$.