Math 310: Final Exam

(Solutions)

Prof. S. Smith: Monday 8 Dec 2003

Problem 0: (review: linear transformations)

Let L denote the function from \mathbf{R}^2 to \mathbf{R}^2 defined by $L(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} x_1 - 2x_2 \\ 3x_1 \end{pmatrix}$. Show that L is a LINEAR transformation, via the following steps:

- (1) Write down a general vector (that is, name its coordinates). Answer: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- (2) Write down another general vector (name its coordinates): Answer: $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$
- (3) Now add your two vectors from (1) and (2). Answer: $\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}$ (3+) Now apply L to the sum vector in (3): Answer: $\begin{pmatrix} (x_1 + y_1) 2(x_2 + y_2) \\ 3(x_1 + y_1) \end{pmatrix}$
- (4) Now apply L separately to the two vectors in (1) and (2)

Answers: $\begin{pmatrix} x_1 - 2x_2 \\ 3x_1 \end{pmatrix}$ and $\begin{pmatrix} y_1 - 2y_2 \\ 3y_1 \end{pmatrix}$

(4+) Now add the two vectors in (4). Answer: $\begin{pmatrix} (x_1 - 2x_2) + (y_1 - 2y_2) \\ 3x_1 + 3y_1 \end{pmatrix}$

FINALLY: Are the answers in (3+) and (4+) the same? Answer: Yes, using distributive laws

- (5) Write down a general vector (you can use (1) again). Answer: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- (6) Write down a general scalar (name it): Answer: c
- (7) Now form the product of the vector in (5) and the scalar in (6). Answer: $\begin{pmatrix} c & x_1 \\ c & x_2 \end{pmatrix}$
- (7+) Now apply L to the product vector in (7): Answer: $\begin{pmatrix} (cx_1) 2(cx_2) \\ 3(cx_1) \end{pmatrix}$ (8) Now apply L to the vector in (5). Answer: $\begin{pmatrix} x_1 2x_2 \\ 3x_1 \end{pmatrix}$.
- (8+) Now multiply the vector in (8) by the scalar in (6). Answer: $\begin{pmatrix} c (x_1 2x_2) \\ c (3x_1) \end{pmatrix}$

FINALLY: Are the answers in (7+) and (8+) the same? Answer: Yes, using distributive laws

Problem 1: Let $A = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$.

- (a) Find the characteristic polynomial, and the eigenvalues, of A. $\det(A-xI)=(2-x)(1-x)-6=(x^2-3x+2)-6=x^2-3x-4=(x-4)(x+1)$, so eigenvalues are 4,-1.
- (b) Find the eigenspaces for those eigenvalues.

For 4: $A - 4.I = \begin{pmatrix} -2 & 3 \\ 2 & -3 \end{pmatrix}$ has $\operatorname{rref} \begin{pmatrix} 1 & -\frac{3}{2} \\ 0 & 0 \end{pmatrix}$, get solutions $a(\frac{3}{2}, 1)^T$. For -1: $A + 1.I = \begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix}$, has $\operatorname{rref} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, get solutions $b(-1, 1)^T$.

Problem 2: Given the differential equation system (functions of t): $\begin{pmatrix} y'_1 = -4y_1 + 2y_2 \\ y'_2 = 2y_1 - y_2 \end{pmatrix}$. I GIVE you the information that eigenvalues of the coefficient matrix A for this system are 0, -5,

I GIVE you the information that eigenvalues of the coefficient matrix A for this system are 0, -5, (a) Find eigenvectors for these eigenvalues of A; then use them to give the *general* solution of the system (with undetermined constants c_1, c_2).

For 0, get $a(\frac{1}{2}, 1)^T$; for -5, get $b(-2, 1)^T$.

Then solution vector $c_1 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} e^{0t} + c_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-5t}$ so $y_1 = \frac{1}{2}c_1 - 2c_2e^{-5t}$ and $y_2 = c_1 + c_2e^{-5t}$.

(b) Now find the particular solution (values of c_1 , c_2) given initial values $y_1(0) = 0$, $y_2(0) = 5$. Solve $\begin{pmatrix} \frac{1}{2} & -2 & 0 \\ 1 & 1 & 5 \end{pmatrix}$ to get $c_1 = 4$, $c_2 = 1$. So $y_1 = 2 - 2e^{-5t}$ and $y_2 = 4 + e^{-5t}$.

Problem 3:

(a) GIVEN: the eigenvalues of $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$ are 2, 3, with eigenvectors $(-1,1)^T$ and $(-1,2)^T$.

Find matrices X, X^{-1} , and D such that $X^{-1}AX = D$ with D a diagonal matrix.

Use this to information find a matrix B such that $B^2 = A$ (use square-root symbols, not decimals).

We can use
$$X = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$$
, $X^{-1} = \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix}$ with $D = X^{-1}AX = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Then $E = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{3} \end{pmatrix}$ satisfies $E^2 = D$ (indeed we could multiply either row of E by ± 1

$$so B = XEX^{-1} = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{3} \end{pmatrix} \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2\sqrt{2} - \sqrt{3} & \sqrt{2} - \sqrt{3} \\ -2\sqrt{2} + 2\sqrt{3} & -\sqrt{2} + 2\sqrt{3} \end{pmatrix}$$

satisfies $B^2 = A$.

(b) Let
$$A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$
. GIVEN: the eigenvalues of A are $1, 2, 2$.

Find the DIMENSIONS of the eigenspaces for these eigenvalues.

Is A diagonalizable? Say why/why not.

Check that $rref(A-1.I_3)$ has 1 free variable, so the dimension of the 1-eigenspace is 1.

However $rref(A-2.I_3)$ has 2 free variables, so the dimension of the 2-eigenspace is 2. Then A is diagonalizable—since for the eigenvalue 2, the dimension of the eigenspace

is equal to the number of times the eigenvalue appears as a root of the characteristic polynomial. (That is, geometric multiplicity = algebraic multiplicity for 2, as well as for 1).

Problem 4: For the symmetric matrix
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$
,

I GIVE you the eigenvalues 5, -1, -1 of A; and an eigenvector $(1, -1, 1)^T$ for eigenvalue 5.

- (a) Find a basis of the eigenspace of A for eigenvalue -1. The row-reduced echelon form of A-(-1)I=A+I has (1,-1,1) as its only nonzero row. So eigenvectors are $(b-c,b,c)^T$; and one possible basis is $(1,1,0)^T$ and $(-1,0,1)^T$.
- (b) Now find an *orthonormal* basis for the eigenspace in (a).

Use it to give an orthogonal diagonalization of A;

that is, find an orthogonal matrix X (satisfying $X^{-1} = X^{T}$) with $X^{-1}AX$ diagonal.

For 5: eigenspace is 1-dimensional; divide original (1,-1,1) by its length $\sqrt{3}$: $x_3 = \frac{1}{\sqrt{3}}(1,-1,1)^T$.

For -1: Start with above basis like $v_1 = (1, 1, 0)^T$ and $v_2 = (-1, 0, 1)^T$.

Apply Gram-Schmidt: first $q_1 = (1, 1, 0)$,

and then $q_2 = v_2 - \frac{v_2 \cdot q_1}{q_1 \cdot q_1} q_1 = (-1, 0, 1)^T - \frac{-1}{2} (1, 1, 0)^T = (-\frac{1}{2}, \frac{1}{2}, 1)^T$ so may as well use the more convenient multiple $q_2 = (-1, 1, 2)^T$.

Now divide each by its length, to get $x_1 = \frac{1}{\sqrt{2}}(1, 1, 0)^T$ and $x_2 = \frac{1}{\sqrt{6}}(-1, 1, 2)^T$.

So now putting
$$x_3$$
 first, can use $X = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}$.

Problem 5:

(a) Find a steady-state vector (with coordinates adding to 1) for the Markov matrix $A = \begin{pmatrix} .6 & .3 \\ .4 & .7 \end{pmatrix}$.

Need eigenvector for eigenvalue 1, so $A - 1 \cdot I_2$ has rref $\begin{pmatrix} 1 & -\frac{3}{4} \\ 0 & 0 \end{pmatrix}$,

so divide eigenvector $(3,4)^T$ by coordinate sum 7 to get proportions $(\frac{3}{7},\frac{4}{7})^T$.

(b) Is the symmetric matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ positive definite?

Give the decomposition $A = LDL^t$ with L lower triangular and D diagonal.

NOT positive definite: eigenvalues -1,3 not all positive

(or, upper-left determinants 1, -3 not all positive)

For decomposition, we start with the LU-decomposition of chapter 1:

we use $A_2^{-2\times 1}$ to get row-reduced form $U = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$, with $L = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$; from U,

we take the diagonal entries to get $D = \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix}$; that is, $U = DL^t$ where $L^t = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.