Math 310: Final Exam

(Solutions)

Prof. S. Smith: Wednesday 13 December 2006

Problem 1: Let $A = \begin{pmatrix} 6 & -4 \\ 3 & -1 \end{pmatrix}$. Work **by hand**; do *not* use a calculator on this problem.

(Except to check your work.)

- (a) Find the characteristic polynomial, and the eigenvalues, of A. $\det(A-xI) = (6-x)(-1-x) (-4.3) = (x^2-5x-6) (-12) = x^2-5x+6 = (x-3)(x-2)$, so eigenvalues are 2, 3.
- (b) Find the eigenspaces for those eigenvalues.

For 2:
$$A - 2.I = \begin{pmatrix} 4 & -4 & 0 \\ 3 & -3 & 0 \end{pmatrix}$$
 has $\operatorname{rref} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, get solutions $\alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
For 3: $A - 31.I = \begin{pmatrix} 3 & -4 & 0 \\ 3 & -4 & 0 \end{pmatrix}$, has $\operatorname{rref} \begin{pmatrix} 1 & -\frac{4}{3} & 0 \\ 0 & 0 & 0 \end{pmatrix}$, get solutions $\beta \begin{pmatrix} \frac{4}{3} \\ 1 \end{pmatrix}$.

Problem 2: Given the differential equation system (functions of t): $\begin{pmatrix} y'_1 = y_1 - 2y_2 \\ y'_2 = 3y_1 - 4y_2 \end{pmatrix}$.

I GIVE you the information that eigenvalues of the coefficient matrix A for this system are -1, -2. (a) Find eigenvectors for these eigenvalues of A; then use them to give the *general* solution of the system (with undetermined constants c_1, c_2).

For
$$-1$$
, get $\alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; for -2 , get $\beta \begin{pmatrix} \frac{2}{3} \\ 1 \end{pmatrix}$, so can use $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.
Then soln.vec. $c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{-2t}$, so $y_1 = c_1 e^{-t} + 2c_2 e^{-2t}$ and $y_2 = c_1 e^{-t} + 3c_2 e^{-2t}$.

(b) Now find the particular solution (values of c_1, c_2) given initial values $y_1(0) = 2$, $y_2(0) = 3$. Solve $\begin{pmatrix} 1 & 2 & 2 \\ 1 & 3 & 3 \end{pmatrix}$ to get $c_1 = 0$, $c_2 = 1$. So $y_1 = 2e^{-2t}$ and $y_2 = 3e^{-2t}$.

Problem 3:

(a) GIVEN: the eigenvalues of $A = \begin{pmatrix} 2 & -8 \\ 1 & -4 \end{pmatrix}$ are 0, -2. Diagonalize A: that is, give matrices X, X^{-1} , and D such that $X^{-1}AX = D$ with D a diagonal matrix.

Find eigenvectors for 0, say
$$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
; and for -2 , say $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

We can use $X = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix}$, $X^{-1} = \begin{pmatrix} \frac{1}{2} & -1 \\ -\frac{1}{2} & 2 \end{pmatrix}$ with $D = X^{-1}AX = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$.

(b) Let
$$A = \begin{pmatrix} 4 & 6 & -2 \\ -1 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
. GIVEN: the eigenvalues of A are 2, 2, 1.

Find the DIMENSIONS of the eigenspaces for these eigenvalues.

Is A diagonalizable? Say why/why not.

Check that $rref(A-2.I_3)$ has 2 free variables, so the dimension of the 2-eigenspace is 2. However also $rref(A-1.I_3)$ has 1 free variable, so the dimension of the 1-eigenspace is 1. Then A is diagonalizable—since for each eigenvalue, the dimension of the eigenspace is equal to the number of times the eigenvalue appears as a root of the characteristic polynomial. (That is, geometric multiplicity = algebraic multiplicity for each eigenvalue).

Problem 4: For the symmetric matrix $A = \begin{pmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{pmatrix}$,

I GIVE you the eigenvalues -2, 7, 7 of A; and an eigenvector $\begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ for eigenvalue -2.

(a) Find a basis of the eigenspace of A for eigenvalue 7.

The row-reduced echelon form of A - (0).I = A has $(1, \frac{1}{2}, -1)$ as its only nonzero row.

So eigenvectors are $\begin{pmatrix} -\frac{1}{2}b+c\\b\\c \end{pmatrix}$; and one possible basis is $\begin{pmatrix} -1\\2\\0 \end{pmatrix}$ and $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$.

(b) Now find an orthonormal basis for the 7-eigenspace in (a).

Use it to give an orthogonal diagonalization of A;

that is, find an *orthogonal* matrix X (satisfying $X^{-1} = X^{T}$) with $X^{-1}AX$ diagonal. Show WORK (Gram-Schmidt) in obtaining your orthonormal basis (**no** calculators!)

For -2: eigenspace is 1-dimensional; divide original $\begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ by its length 3: $x_3 = \frac{1}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$.

For 7: Start with above basis like $v_1 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Apply Gram-Schmidt: first $q_1 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$; and then $q_2 = v_2 - \frac{v_2 \cdot q_1}{q_1 \cdot q_1} q_1$

 $= \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \frac{\begin{pmatrix} 1\\0\\1 \end{pmatrix} \cdot \begin{pmatrix} -1\\2\\0 \end{pmatrix}}{\begin{pmatrix} -1\\2\\0 \end{pmatrix} \cdot \begin{pmatrix} -1\\2\\0 \end{pmatrix}} \begin{pmatrix} -1\\2\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \frac{-1}{5} \begin{pmatrix} -1\\2\\0 \end{pmatrix} = \begin{pmatrix} \frac{4}{5}\\\frac{2}{5}\\1 \end{pmatrix}, \text{ so use} = \begin{pmatrix} 4\\2\\5 \end{pmatrix}.$

Now divide each by its length, to get $x_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$ and $x_2 = \frac{1}{\sqrt{45}} \begin{pmatrix} 4 \\ 2 \\ 5 \end{pmatrix}$.

So now putting x_3 first, can use $X = \begin{pmatrix} -\frac{2}{3} & -\frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}} \\ -\frac{1}{3} & \frac{2}{\sqrt{5}} & \frac{2}{\sqrt{45}} \\ \frac{2}{3} & 0 & \frac{5}{\sqrt{45}} \end{pmatrix}$.

Problem 5: (a) Is the matrix $\begin{pmatrix} 3 & 4 \\ 4 & 1 \end{pmatrix}$ positive definite? (Why/why not—any method)

No; it has a negative eigenvalue $-2.1231\ldots$;
Or, the principal minor determinants are 3 and $3\cdot 1-4\cdot 4=-13$, and the latter is negative.
(b) Give the LU-decomposition of the symmetric matrix $A=\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix}$.

Then give the Cholesky decomposition of A—that is, find a matrix B such that $A=BB^T$.

The row operation $A_2^{-\frac{1}{2}\times 1}$ converts A to the row echelon form $\begin{pmatrix} 4 & 2 \\ 0 & 9 \end{pmatrix}$, which we use for U.

And then L is the inverse of the matrix for that operation, namely $\begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix}$.

That is, the LU-decomposition is given by A=LU: $\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 0 & 9 \end{pmatrix}$.

Next, we factor $U=DL^T\begin{pmatrix} 4 & 2 \\ 0 & 9 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$ as the product of the diagonal matrix D of its eigenvalues, with L^T .

This gives the decomposition $A=LDL^T$: $\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$.

We then take the "square root" of D: namely $E = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$;

and finally we set $B = LE = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$.

We then have the Cholesky decomposition $A = BB^T$: $\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$.