Math 310: Final Exam (Solutions) Prof. S. Smith: Wednesday 13 December 2006

Problem 1: Let A = g :11 ) . Work by hand; do not use a calculator on this problem.
(Except to check your work.)
(a) Find the characteristic polynomial, and the eigenvalues, of A.
det(A—zl) = (6—x2)(=1—2)—(—4.3) = (z? =52 —6) — (=12) = 22 =52+ 6 = (z — 3) (v — 2),
so eigenvalues are 2, 3.
(b) Find the eigenspaces for those eigenvalues.
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Problem 2: Given the differential equation system (functions of ¢): ( Z} B 351 452 )
y = 1 —4Y

I GIVE you the information that eigenvalues of the coefficient matrix A for this system are —1, —2.

(a) Find eigenvectors for these eigenvalues of A; then use them to give the general solution of the

system (with undetermined constants ¢y, ¢3).
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(b) Now find the particular solution (values of ¢1, ¢3) given initial values y;(0) = 2, y2(0) = 3.
Solve ( 1 g ‘ 3 ) togetc, =0,c0 =1. Soy; = 2e % and y, = 3e~ 2.
Problem 3:

(a) GIVEN: the eigenvalues of A = ( ? :i ) are 0, —2. Diagonalize A: that is, give matrices

X, X7, and D such that X~'AX = D with D a diagonal matrix.

Find eigenvectors for 0, say ( 11 ); and for —2, say ( ? )
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Find the DIMENSIONS of the eigenspaces for these eigenvalues.

Is A diagonalizable? Say why/why not.
Check that rref(A — 2.13) has 2 free variables, so the dimension of the 2-eigenspace is 2.
However also rref(A — 1.13) has 1 free variable, so the dimension of the 1-eigenspace is 1.
Then A is diagonalizable—since for each eigenvalue, the dimension of the eigenspace is
equal to the number of times the eigenvalue appears as a root of the characteristic polynomial.
(That is, geometric multiplicity = algebraic multiplicity for each eigenvalue).
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Problem 4: For the symmetric matrix A= -2 6 2 |,
( 4 2 3 )
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I GIVE you the eigenvalues —2,7,7 of A; and an eigenvector | —1 | for eigenvalue —2.
2

(a) Find a basis of the eigenspace of A for eigenvalue 7.
The row-reduced echelon form of A — (0).I = A has (1, 3,—1) as its only nonzero row.
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So eigenvectors are b ; and one possible basis is 2 land | O
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(b) Now find an orthonormal basis for the 7-eigenspace in (a).

Use it to give an orthogonal diagonalization of A;

that is, find an orthogonal matrix X (satisfying X~ = X7') with X~'AX diagonal.
Show WORK (Gram-Schmidt) in obtaining your orthonormal basis (no calculators!)
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For 7: Start with above basis like v, = ( 2 ) and vy = ( 0 )
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Now divide each by its length, to get 1 = Ls 2 | and =9 = % 2 .
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So now putting x3 first, can use X = —% % \/%—5
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Problem 5: (a) Is the matrix Z 1 > positive definite? (Why/why not—any method)
No; it has a negative eigenvalue —2.1231 .. ;
Or, the principal minor determinants are 3 and 3-1—4-4 = —13, and the latter is negative.
(b) Give the LU-decomposition of the symmetric matrix A = ( ;1 13 )

Then give the Cholesky decomposition of A—that is, find a matrix B such that A = BBT.
The row operation A, >*! converts A to the row echelon form < 3 3 ), which we use for U.

. . . . 1
And then L is the inverse of the matrix for that operation, namely ( 1 0 )

That is, the LU-decomposition is given by A = LU: 2 1 (1) ( - ) :
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Next, we factor U = DL (0 9>—<0 9><0 1>

as the product of the diagonal matrix D of its eigenvalues, with L*.
This gives the decomposition A = LDL™: ( 12 ) = ( Lo ) < 40 > ( 1
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We then take the “square root” of D: namely F = 0 3 )
10 20
and finally we set B = LE = (5 1><0 3> (1 3>
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We then have the Cholesky decomposition A = BB": 9 10 > = ( 1 3 > ( 0 3 )



