Math 310: Final Exam

(Solutions)

Prof. S. Smith: Tuesday 3 May 2005

Problem 1: Let $A = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$. Work **by hand**; do *not* use a calculator on this problem.

(Except possibly to *check* your work.)

- (a) Find the characteristic polynomial, and the eigenvalues, of A. $\det(A - xI) = (3 - x)(1 - x) - 4.2 = (x^2 - 4x + 3) - 8 = x^2 - 4x - 5 = (x - 5)(x + 1),$ so eigenvalues are 5, -1.
- (b) Find the eigenspaces for those eigenvalues.

For 5: $A - 5.I = \begin{pmatrix} -2 & 2 \\ 4 & -4 \end{pmatrix}$ has rref $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, get solutions $a(1,1)^T$. For -1: $A - (-1)I = A + I = \begin{pmatrix} 4 & 2 \\ 4 & 2 \end{pmatrix}$, has $\operatorname{rref} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{pmatrix}$, get solutions $b(-\frac{1}{2}, 1)^T$.

Problem 2: Given the differential equation system (functions of t): $\begin{pmatrix} y'_1 &= -y_1 & +2y_2 \\ y'_2 &= 2y_1 & -y_2 \end{pmatrix}$.

I GIVE you the information that eigenvalues of the coefficient matrix A for this system are -3, 1. (a) Find eigenvectors for these eigenvalues of A; then use them to give the qeneral solution of the system (with undetermined constants c_1, c_2).

For -5, get $a(-1,1)^T$; for 1, get $b(1,1)^T$.

Then solution vector $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t$, so $y_1 = -c_1 e^{-3t} + c_2 e^t$ and $y_2 = c_1 e^{-3t} + c_2 e^t$.

(b) Now find the particular solution (values of c_1, c_2) given initial values $y_1(0) = 3, y_2(0) = 1$. Solve $\begin{pmatrix} -1 & 1 & 3 \\ 1 & 1 & 1 \end{pmatrix}$ to get $c_1 = -1, c_2 = 2$. So $y_1 = e^{-3t} + 2e^t$ and $y_2 = -e^{-3t} + 2e^t$.

Problem 3:

(a) GIVEN: the eigenvalues of $A = \begin{pmatrix} 5 & 6 \\ -2 & -2 \end{pmatrix}$ are 2, 1. Diagonalize A: that is, give matrices X, X^{-1} , and D such that $X^{-1}AX = D$ with D a diagonal matrix.

Find eigenvectors for 2, say
$$(-2,1)^T$$
; and for 1, say $(-3,2)$.
We can use $X = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix}$, $X^{-1} = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix}$ with $D = X^{-1}AX = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

(b) Let
$$A = \begin{pmatrix} -4 & -10 & 2 \\ 3 & 7 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
. GIVEN: the eigenvalues of A are 2, 1, 1.

Find the DIMENSIONS of the eigenspaces for these eigenvalues.

Is A diagonalizable? Say why/why not.

Check that $rref(A-2.I_3)$ has 1 free variable, so the dimension of the 2-eigenspace is 1. However also $rref(A-1.I_3)$ has 1 free variable, so the dimension of the 1-eigenspace is only 1. Then A is not diagonalizable—since for the eigenvalue 1, the dimension of the eigenspace is less than the number of times the eigenvalue appears as a root of the characteristic polynomial. (That is, geometric multiplicity < algebraic multiplicity for 1).

Problem 4: For the symmetric matrix
$$A = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 1 & -1 \\ -2 & -1 & 1 \end{pmatrix}$$
,

I GIVE you the eigenvalues 6, 0, 0 of A; and an eigenvector $(-2, -1, 1)^T$ for eigenvalue 6.

(a) Find a basis of the eigenspace of A for eigenvalue 0.

The row-reduced echelon form of A-(0).I=A has $(1,\frac{1}{2},-\frac{1}{2})$ as its only nonzero row. So eigenvectors are $(-\frac{1}{2}b+\frac{1}{2}c,b,c)^T$; and one possible basis is $(-1,2,0)^T$ and $(1,0,2)^T$.

(b) Now find an *orthonormal* basis for the eigenspace in (a).

Use it to give an orthogonal diagonalization of A;

that is, find an orthogonal matrix X (satisfying $X^{-1} = X^{T}$) with $X^{-1}AX$ diagonal.

Show WORK in obtaining your orthonormal basis (no calculators!)

For 6: eigenspace is 1-dimensional; divide original (-2, -1, 1) by its length $\sqrt{6}$: $x_3 = \frac{1}{\sqrt{6}}(-2, -1, 1)^T$.

For 0: Start with above basis like $v_1 = (-1, 2, 0)^T$ and $v_2 = (1, 0, 2)^T$.

Apply Gram-Schmidt: first $q_1 = (-1, 2, 0)$, and then $q_2 = v_2 - \frac{v_2 \cdot q_1}{q_1 \cdot q_1} q_1 = (1, 0, 2)^T - \frac{-1}{5} (-1, 2, 0)^T = (\frac{4}{5}, \frac{2}{5}, 2)^T$

so may as well use the more convenient multiple $q_2 = (2, 1, 5)^T$. Now divide each by its length, to get $x_1 = \frac{1}{\sqrt{5}}(-1, 2, 0)^T$ and $x_2 = \frac{1}{\sqrt{30}}(2, 1, 5)^T$.

Now divide each by its length, to get x_1 x_2 x_3 x_4 . So now putting x_3 first, can use $X = \begin{pmatrix} -\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} \\ -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} \\ \frac{1}{\sqrt{6}} & 0 & \frac{5}{\sqrt{30}} \end{pmatrix}$.

(c) Give the projection matrices into the two eigenspaces for A. (Calculators OK on this part.) Just compute UU^T , where the columns of U are the orthonormal basis from (b):

for 6,
$$\frac{1}{6}$$
 $\begin{pmatrix} 4 & 2 & -2 \\ 2 & 1 & -1 \\ -2 & -1 & 1 \end{pmatrix}$ and for 0, $\frac{1}{6}$ $\begin{pmatrix} 2 & -2 & 2 \\ -2 & 5 & 1 \\ 2 & 1 & 5 \end{pmatrix}$

Problem 5: (a) Can you find an orthonormal basis of eigenvectors for $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$?

(Why/why not?)

No; the matrix is not normal (does not commute with its transpose).

So the separate eigenspaces are not orthogonal.

(b) For the Markov matrix $A = \begin{pmatrix} .8 & .1 \\ .2 & .9 \end{pmatrix}$, I GIVE you that the eigenvalues are 1 and .7.

Give a formula for the nth power A^n .

Compute eigenvectors for 1, say $(1,2)^T$; and for .7, say $(-1,1)^T$.

So for $X = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ we have $X^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$ and $X^{-1}AX = D$ where $D = \begin{pmatrix} 1 & 0 \\ 0 & .7 \end{pmatrix}$.

So $A = XDX^{-1}$ and hence $A^n = XD^nX^{-1} = \frac{1}{3} \begin{pmatrix} 1 + 2(.7)^n & 1 - (.7)^n \\ 2 - 2(.7)^n & 2 + (.7)^n \end{pmatrix}$.