Math 310: Hour Exam 1

(Solutions)

Prof. S. Smith: Fall 1995

Problem 1: (a) Find the row-reduced echelon form of

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

$$\stackrel{A_{2}^{-4\times1},A_{3}^{-7\times1}}{\to} \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{array} \right) \stackrel{M_{-\frac{1}{3}\times2}}{\to} \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -6 & -12 \end{array} \right) \stackrel{A_{1}^{-2\times2},A_{3}^{6\times2}}{\to} \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array} \right)$$

(b) What are the solutions of the system Ax = 0? (Check!)

Third variable is free, so solutions $x_3(1,-2,1)^T$.

Problem 2: Give the *LU*-decomposition of

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 3 \end{array}\right);$$

that is, find lower-triangular L and upper-triangular U, so that A = LU.

Get
$$U$$
 from $\stackrel{A_2^{-1\times 1}}{\to}$ $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. So L from inverse operation $A_2^{+1\times 1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

Problem 3: Use Cramer's rule (determinants) to solve Ax = b given by

$$(A|b) = \left(\begin{array}{cc|c} 1 & 1 & 5 \\ 1 & 2 & 7 \end{array}\right).$$

First
$$\det\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 1$$
, so $x_1 = \begin{pmatrix} \frac{1}{1} \end{pmatrix} \det\begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix} = 3$ and $x_2 = \det\begin{pmatrix} 1 & 5 \\ 1 & 7 \end{pmatrix} = 2$.

Problem 4: (a) Find the inverse (by any method) of

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 5 \end{array}\right).$$

Quick via adjoint: $\det \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} = -1$, so inverse is $-\begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$.

(b) Use the above to express the solutions of Ax = b in terms of the constants b_1 and b_2 . By $A^{-1}b$, namely $x_1 = -5b_1 + 2b_2$ and $x_2 = 3b_1 - b_2$. **Problem 5:** (a) Is (1,2,3) in the span **e**f (4,0,5) and (6,0,7)?

No—for example, any linear combination of the latter two vectors has 0 in second entry.

(b) Let V be the space of all functions (with at least 2 derivatives).

Let W be the subSET of all functions f which are solutions of the differential equation

$$f'' + 5f = 0.$$

Show that the solution set W is a subSPACE of V.

Take $f, g \in W$, and scalar c: Then we have f'' + 5f = 0 = g'' + 5g.

Is
$$f + g \in W$$
? $(f + g)'' + 5(f + g) = (f'' + 5f) + (g'' + 5g) = 0 + 0 = 0$, so OK .

Is
$$cf \in W$$
? $(cf)'' + 5(cf) = c(f'' + 5f) = c(0) = 0$, also OK .