Math 310: Hour Exam 1

(Solutions)

Prof. S. Smith: 26 Sept 1994

Problem 1: Use row-reduced echelon form (Gauss-Jordan) to find all solutions of

$$\begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 1 \\ 3 & 4 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}.$$

$$\stackrel{E_{1,2}}{\to} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 2 & 3 & 1 & 1 \\ 3 & 4 & 2 & 4 \end{array}\right) \stackrel{A_2^{-2\times 1}, A_3^{-3\times 1}}{\to} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & 1 & -1 & -5 \\ 0 & 1 & -1 & -5 \end{array}\right) \stackrel{A_1^{-1\times 2}, A_3^{-1\times 2}}{\to} \left(\begin{array}{ccc|c} 1 & 0 & 2 & 8 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Thus x_3 is free variable; with $x_3 = 1$ in Ax = 0, homogenous solutions are $\alpha(-2 \ 1 \ 1)$. With $x_3 = 0$ in Ax = b, particular solution is (8 - 50). So general: $(8 - 2\alpha, -5 + \alpha, \alpha)$.

Problem 2:

- (a) Is $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ invertible? If so, use elementary row operations to find A^{-1} . $\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{A_2^{-1 \times 1}} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{A_2^{-1 \times 2}} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & -1 & 1 \\ 0 & 0 & 1 & 1 & -1 & 1 & 1 \end{pmatrix}$ Now A^{-1} is on the right
- (b) Use row operations to find the LU decomposition of $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

$$\stackrel{A_2^{-1\times 1}}{\to} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right) \text{ is echelon-form so gives } U;$$

and from inverse of the row operation we get $L = A_2^{1 \times 1}(I_3) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Problem 3:

(a) Find the determinant of $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.

Is A singular? How many solutions does Ax = 0 have?

$$(top\ row)\ \det(A) = 1(3 \cdot 1 - 1 \cdot 1) - 2(1 \cdot 1 - 1 \cdot 3) = 2 + 4 = 6.$$

Thus A is non-singular; and Ax = 0 has unique solution x = 0.

(b) Use Cramer's rule (determinants) to solve
$$\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
. First, $\det(A) = 2 \cdot 2 - 3 \cdot 3 = 4 - 9 = -5$. Next $\det\begin{pmatrix} 2 & 3 \\ 5 & 2 \end{pmatrix} = 4 - 15 = -11$ and $\det\begin{pmatrix} 2 & 2 \\ 3 & 5 \end{pmatrix} = 10 - 6 = 4$. So $x_1 = \frac{11}{5}$ and $x_2 = -\frac{4}{5}$.

Problem 4: Show that the set S consisting of 2x2 symmetric matrices $(A^T = A)$ forms a subspace of $\mathbf{R}^{2\times 2}$.

If
$$A, B \in S$$
 then $A^T = A$, $B^T = B$.
Then $(A + B)^T = A^T + B^T = A + B$; so $A + B$ is symmetric, and hence is also in S .
Similarly if $A \in S$ and c is scalar, then $(cA)^T = c(A^T) = c(A) = cA$,
so that cA is symmetric, and hence is also in S .