Combinatorics in Representations of Finite Classical Groups

Bhama Srinivasan

University of Illinois at Chicago

University of Florida, September 2007
Combinatorics plays a role in the Representation Theory (Ordinary and Modular) of:

(i) Symmetric Groups
(ii) General linear groups (over \mathbb{F}_q and \mathbb{C})
(iii) Classical groups (over \mathbb{F}_q and \mathbb{C})
Some main problems of modular representation theory:

- Describe the irreducible modular representations, e.g. their degrees
- Describe the blocks
- Find the decomposition matrix D, the transition matrix between ordinary and Brauer characters.
- Global to local: Describe information on the block B by ”local information”, i.e. from blocks of subgroups of the form $N_G(P)$, P a p-group
Ordinary characters of S_n: parametrized by partitions of n

Given partition λ, have $\chi_\lambda \in \text{Irr}(S_n)$

λ has associated Young tableau

Hook length formula:

$$\chi_\lambda(1) = \frac{n!}{\prod h_{ij}}$$

Here h_{ij} is the hook length of node (i, j)
Given λ, have $\chi_\lambda \in \text{Irr}(S_n)$

- p positive integer: Have p-hooks, p-core of λ.

Theorem (Brauer-Nakayama) Characters χ_λ, χ_μ of S_n are in the same p-block (p prime) if and only if λ and μ have the same p-core.
Recently, concept of p-weight of $\lambda = \text{number of } p\text{-hooks removed to get to the } p\text{-core}.$

Theorem (Chuang-Rouquier, 2005) Two p-blocks of S_n with the same p-weight are derived equivalent, i.e. the derived categories of the block algebras are equivalent.
G connected reductive group over F_q, $F = \bar{F}_q$

q a power p^n of the prime p

F Frobenius endomorphism, $F : G \rightarrow G$

$G = G^F$ finite reductive group

T torus, closed subgroup $\simeq F^\times \times F^\times \times \cdots \times F^\times$

L Levi subgroup, centralizer $C_G(T)$ of a torus T
G connected reductive group over F_q, $F = \bar{F}_q$

q a power p^n of the prime p

F Frobenius endomorphism, $F : G \rightarrow G$

$G = G^F$ finite reductive group

T torus, closed subgroup $\simeq F^\times \times F^\times \times \cdots \times F^\times$

L Levi subgroup, centralizer $C_G(T)$ of a torus T
G connected reductive group over \mathbb{F}_q, $\mathbb{F} = \overline{\mathbb{F}}_q$

q a power p^n of the prime p

F Frobenius endomorphism, $F : G \rightarrow G$

$G = G^F$ finite reductive group

T torus, closed subgroup $\simeq \mathbb{F}^\times \times \mathbb{F}^\times \times \cdots \times \mathbb{F}^\times$

L Levi subgroup, centralizer $C_G(T)$ of a torus T
Let \mathbf{P} be an F-stable parabolic subgroup of \mathbf{G} and \mathbf{L} an F-stable Levi subgroup of \mathbf{P} so that $L \leq P \leq G$.

Harish-Chandra induction is the following map:

$$R_L^G : K_0(KL) \rightarrow K_0(KG).$$

If $\psi \in \text{Irr}(L)$ then $R_L^G(\psi) = \text{Ind}_P^G(\tilde{\psi})$ where $\tilde{\psi}$ is the character of P obtained by inflating ψ to P.
Let P be an F-stable parabolic subgroup of G and L an F-stable Levi subgroup of P so that $L \subseteq P \subseteq G$.

Harish-Chandra induction is the following map:

$$R^G_L : K_0(KL) \to K_0(KG).$$

If $\psi \in \text{Irr}(L)$ then $R^G_L(\psi) = \text{Ind}^G_P(\tilde{\psi})$ where $\tilde{\psi}$ is the character of P obtained by inflating ψ to P.

\(\chi \in \text{Irr}(G) \) is **cuspidal** if \(\langle \chi, R_L^G(\psi) \rangle = 0 \) for any \(L \leq P < G \) where \(P \) is a proper parabolic subgroup of \(G \). The pair \((L, \theta)\) a cuspidal pair if \(\theta \in \text{Irr}(L) \) is cuspidal.

\(\text{Irr}(G) \) partitioned into Harish-Chandra families: A family is the set of constituents of \(R_L^G(\theta) \) where \((L, \theta)\) is cuspidal.
Now let ℓ be a prime not dividing q.
Suppose L is an F-stable Levi subgroup, not necessarily in an F-stable parabolic P of G.

- The Deligne-Lusztig linear operator:

$$R^G_L : K_0(\overline{Q}L) \rightarrow K_0(\overline{Q}G).$$

- Every χ in $\text{Irr}(G)$ is in $R^G_T(\theta)$ for some (T, θ), where T is an F-stable maximal torus and $\theta \in \text{Irr}(T)$.

- The unipotent characters of G are the irreducible characters χ in $R^G_T(1)$ as T runs over F-stable maximal tori of G.

If $L \leq P \leq G$, where P is a F-stable parabolic subgroup, R^G_L is just Harish-Chandra induction.
Now let \(\ell \) be a prime not dividing \(q \).

Suppose \(L \) is an \(F \)-stable Levi subgroup, not necessarily in an \(F \)-stable parabolic \(P \) of \(G \).

- The Deligne-Lusztig linear operator:
 \[
 R^G_L : K_0(\mathbb{Q}_L) \rightarrow K_0(\mathbb{Q}_G).
 \]

- Every \(\chi \) in \(\text{Irr}(G) \) is in \(R^G_T(\theta) \) for some \((T, \theta)\), where \(T \) is an \(F \)-stable maximal torus and \(\theta \in \text{Irr}(T) \).

- The unipotent characters of \(G \) are the irreducible characters \(\chi \) in \(R^G_T(1) \) as \(T \) runs over \(F \)-stable maximal tori of \(G \).

If \(L \subseteq P \subseteq G \), where \(P \) is a \(F \)-stable parabolic subgroup, \(R^G_L \) is just Harish-Chandra induction.
Now let \(\ell \) be a prime not dividing \(q \).

Suppose \(L \) is an \(F \)-stable Levi subgroup, not necessarily in an \(F \)-stable parabolic \(P \) of \(G \).

- The Deligne-Lusztig linear operator:

\[
R^G_L : K_0(\mathbb{Q}_l L) \to K_0(\mathbb{Q}_l G).
\]

- Every \(\chi \) in \(\text{Irr}(G) \) is in \(R^G_T(\theta) \) for some \((T, \theta) \), where \(T \) is an \(F \)-stable maximal torus and \(\theta \in \text{Irr}(T) \).

- The unipotent characters of \(G \) are the irreducible characters \(\chi \) in \(R^G_T(1) \) as \(T \) runs over \(F \)-stable maximal tori of \(G \).

If \(L \leq P \leq G \), where \(P \) is a \(F \)-stable parabolic subgroup, \(R^G_L \) is just Harish-Chandra induction.
Example: $G = GL(n, q)$. If L is the subgroup of diagonal matrices contained in the (Borel) subgroup of upper triangular matrices, we can do Harish-Chandra induction. But if L is a torus (Coxeter torus) of order $q^n - 1$, we must do Deligne-Lusztig induction to obtain generalized characters from characters of L.
As before, G is a finite reductive group. If e is a positive integer, $\phi_e(q)$ is the e-th cyclotomic polynomial. The order of G is the product of a power of q and certain cyclotomic polynomials. A torus T of G is a ϕ_e-torus if T has order a power of $\phi_e(q)$.

The centralizer in G of a ϕ_e-torus is an e-split Levi subgroup of G.
As before, G is a finite reductive group. If e is a positive integer, $\phi_e(q)$ is the e-th cyclotomic polynomial. The order of G is the product of a power of q and certain cyclotomic polynomials. A torus T of G is a ϕ_e-torus if T has order a power of $\phi_e(q)$. The centralizer in G of a ϕ_e-torus is an e-split Levi subgroup of G.
Example. In GL_n, e-split Levi subgroups L are isomorphic to

$$\prod_i GL(m_i, q^e) \times GL(r, q).$$

An e-cuspidal pair (L, θ) is defined as in the Harish-Chandra case, using only e-split Levi subgroups. Thus $\chi \in \text{Irr}(G)$ is e-cuspidal if

$$\langle \chi, R^G_L(\psi) \rangle = 0$$

for any e-split Levi subgroup L.

The unipotent characters of G are divided into e-Harish-Chandra families, as in the usual Harish-Chandra case of $e = 1$.
Example. In GL_n e-split Levi subgroups L are isomorphic to
$\prod_i GL(m_i, q^e) \times GL(r, q)$.

An e-cuspidal pair (L, θ) is defined as in the Harish-Chandra case,
using only e-split Levi subgroups. Thus $\chi \in \text{Irr}(G)$ is e-cuspidal if
$\langle \chi, R^G_L(\psi) \rangle = 0$ for any e-split Levi subgroup L.

The unipotent characters of G are divided into e-Harish-Chandra
families, as in the usual Harish-Chandra case of $e = 1$.
Example. In GL_n, e-split Levi subgroups L are isomorphic to
$\prod_i GL(m_i, q^e) \times GL(r, q)$.

An e-cuspidal pair (L, θ) is defined as in the Harish-Chandra case, using only e-split Levi subgroups. Thus $\chi \in \text{Irr}(G)$ is e-cuspidal if
$\langle \chi, R^G_L(\psi) \rangle = 0$ for any e-split Levi subgroup L.

The unipotent characters of G are divided into e-Harish-Chandra families, as in the usual Harish-Chandra case of $e = 1$.
Definition. A unipotent block of G is a block which contains unipotent characters.

SURPRISE: Brauer Theory and Lusztig Theory are compatible!

THEOREM (Cabanes-Enguehard) Let B be a unipotent block of G, ℓ odd and good, e the order of $q \mod \ell$. Then the unipotent characters in B are precisely the constituents of $R^G_L(\lambda)$ where the pair (L, λ) is e-cuspidal.

Thus the unipotent blocks of G are parametrized by e-cuspidal pairs (L, λ) up to G-conjugacy.
$G = GL(n, q)$, ℓ a prime not dividing q, e the order of $q \mod \ell$.

The unipotent characters of G are indexed by partitions of n. Degrees again by a hook length formula:

$$\chi_{\lambda}(1) = |G|/\prod(q^{h_{ij}-1})$$

Theorem (Fong-Srinivasan, 1982) $\chi_{\lambda}, \chi_{\mu}$ are in the same ℓ-block if and only if λ, μ have the same e-core.
Interpretation: \(\chi_\lambda, \chi_\mu \) are in the same \(\ell \)-block if and only if they are constituents of \(R_L^G(\psi) \) where \(L \) is a product of tori of order \(q^{e-1} \) and \(GL(m, q), \psi = 1 \times \chi_\kappa, \kappa \) is an \(e \)-core.

\(\lambda, \mu \) are obtained from \(\kappa \) by adding \(e \)-hooks. Blocks are classified by \(e \)-cores.
Interpretation: χ_λ, χ_μ are in the same ℓ-block if and only if they are constituents of $R^G_L(\psi)$ where L is a product of tori of order q^{e-1} and $GL(m, q), \psi = 1 \times \chi_\kappa, \kappa$ is an e-core.

λ, μ are obtained from κ by adding e-hooks. Blocks are classified by e-cores.
$G = \text{Sp}(2n, q), \text{SO}(2n + 1, q), \text{SO}^\pm(2n, q), \text{q odd.}$

e is the order of q mod ℓ.

A symbol is a pair (Λ_1, Λ_2) of subsets of \mathbb{N}. Notion of e-hooks, e-cohooks, e-cores of symbols defined.

\[
\begin{pmatrix}
0 & 1 & 2 \\
1 & 3
\end{pmatrix},
\begin{pmatrix}
0 & 1 & 4 \\
1 & 3
\end{pmatrix},
\begin{pmatrix}
1 & 3 & 4 \\
1 & 3
\end{pmatrix}
\]

Get the second and third symbols from the first by adding a 2-hook, 2-cohook.
$G = Sp(2n, q), SO(2n + 1, q), SO^\pm(2n, q)$, q odd.

e is the order of q mod ℓ.

A symbol is a pair (Λ_1, Λ_2) of subsets of \mathbb{N}. Notion of e-hooks, e-cohooks, e-cores of symbols defined.

$$
\begin{pmatrix}
0 & 1 & 2 \\
1 & 3
\end{pmatrix},
\begin{pmatrix}
0 & 1 & 4 \\
1 & 3
\end{pmatrix},
\begin{pmatrix}
0 & 1 & 1 \\
1 & 3 & 4
\end{pmatrix}
$$

Get the second and third symbols from the first by adding a 2-hook, 2-cohook.
In $G = \text{Sp}(2n, q), \text{SO}(2n + 1, q), \text{SO}^{\pm}(2n, q)$, unipotent blocks are again classified by e-cores of symbols. (Fong-Srinivasan, 1989)

Theorem of Asai gives the $R^G_L(\lambda)$ map where λ is parametrized by symbols: Add e-hooks or e-cohooks.
Aim: Bijection of non-unipotent blocks with unipotent blocks of suitable subgroups, e.g. centralizers of semisimple elements.

Theorem of Bonnafé- Rouquier: Case when centralizers are Levi.

Theorem on unipotent blocks of $G = Sp(2n, q), SO(2n + 1, q), SO^\pm(2n, q)$ generalized to "quadratic unipotent" blocks. Centralizers of semisimple elements are products of symplectic, orthogonal groups. Blocks of $O(2n + 1, q), O^\pm(2n, q)$ involved; pairs of symbols, e-hooks, e-cohooks arise.
Aim: Bijection of non-unipotent blocks with unipotent blocks of suitable subgroups, e.g. centralizers of semisimple elements.

Theorem of Bonnafé- Rouquier: Case when centralizers are Levi.

Theorem on unipotent blocks of $G = Sp(2n, q), SO(2n + 1, q), SO^\pm(2n, q)$ generalized to ”quadratic unipotent” blocks. Centralizers of semisimple elements are products of symplectic, orthogonal groups. Blocks of $O(2n + 1, q), O^\pm(2n, q)$ involved; pairs of symbols, e-hooks, e-cohooks arise.
Let G be “twisted” $GL(n, q)$, i.e. $GL(n, q)$ extended by an automorphism of order 2. Have blocks of G parametrized by pairs of partitions, connected with blocks of subgroups of the form $Sp(2r, q) \times O(n - 2r, q)$.

Recall H. Weyl: GL_n is the ”all-embracing majesty”!
Let G be “twisted” $GL(n, q)$, i.e. $GL(n, q)$ extended by an automorphism of order 2. Have blocks of G parametrized by pairs of partitions, connected with blocks of subgroups of the form $Sp(2r, q) \times O(n - 2r, q)$.

Recall H.Weyl: GL_n is the ”all-embracing majesty”!