Modular representations of general linear groups: An Overview

Bhama Srinivasan

University of Illinois at Chicago

Regina, May 2012

To Robert Steinberg on his 90th birthday
The outline of my talk

- Ordinary Representations of GL_n
- Combinatorics of tableaux
- Modular Representations of GL_n
- Blocks
- Decomposition Numbers
- New Methods: Lie Theory
Ordinary representation Theory over K of characteristic 0
Modular Representation Theory over k of characteristic ℓ not dividing q

- a partition of the ordinary characters, or KG-modules, into blocks
- a partition of the Brauer characters, or kG-modules, into blocks
- a partition of the decomposition matrix into blocks
Some main problems of modular representation theory:

- Describe the blocks as sets of characters, or as algebras
- Describe the irreducible modular representations, e.g. their degrees
- Find the decomposition matrix D, the transition matrix between ordinary and Brauer characters.
- Global to local: Describe information on the block B by "local information", i.e. from blocks of subgroups of the form $N_G(P)$, P a p-group
$G = GL(n, q)$ has subgroups:

- Tori, abelian subgroups (e.g. diagonal matrices)
- Levi subgroups, products of subgroups of the form $GL(m, q^d)$
- Borel subgroups, isomorphic to “upper triangular matrices”
- Parabolic subgroups of the form $P = LV$, L a product of subgroups of the form $GL(m, q)$, $V \triangleleft P$
Parabolic subgroup P is of the form

$$
\begin{pmatrix}
\clubsuit & * & * & \ldots & * \\
0 & \clubsuit & * & \ldots & * \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & 0 & \clubsuit
\end{pmatrix}
$$
Then L is of the form
\[
\begin{pmatrix}
\clubsuit & 0 & 0 & \cdots & 0 \\
0 & \clubsuit & 0 & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \clubsuit
\end{pmatrix}
\]
And V is of the form

$$\begin{pmatrix}
I & * & * & \ldots & * \\
0 & I & * & \ldots & * \\
. & . & . & . & . \\
0 & 0 & 0 & 0 & I
\end{pmatrix}$$
Examples of tori:

- Subgroup of diagonal matrices
- Cyclic torus generated by

$$
\begin{pmatrix}
\alpha & 0 & \cdots & 0 \\
0 & \alpha^q & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \alpha^{q^{n-1}}
\end{pmatrix}
$$

(α is a primitive $q^n - 1$-th root of unity)
- products of cyclic tori as above
Harish-Chandra theory (applicable to finite reductive groups)

P a parabolic subgroup of G, L a Levi subgroup of P, so that $L \leq P \leq G$.

Harish-Chandra induction is the following map:

$$R_L^G : K_0(KL) \to K_0(KG).$$

If $\psi \in \text{Irr}(L)$ then $R_L^G(\psi) = \text{Ind}_P^G(\tilde{\psi})$ where $\tilde{\psi}$ is the character of P obtained by inflating ψ to P.
Harish-Chandra theory (applicable to finite reductive groups)

P a parabolic subgroup of G, L a Levi subgroup of P, so that $L \leq P \leq G$.

Harish-Chandra induction is the following map:

$$R_L^G : K_0(KL) \to K_0(KG).$$

If $\psi \in \text{Irr}(L)$ then $R_L^G(\psi) = \text{Ind}_P^G(\tilde{\psi})$ where $\tilde{\psi}$ is the character of P obtained by inflating ψ to P.
$\chi \in \text{Irr}(G)$ is cuspidal if $\langle \chi, R^G_L(\psi) \rangle = 0$ for any $L \leq P < G$ where P is a proper parabolic subgroup of G. The pair (L, θ) a cuspidal pair if $\theta \in \text{Irr}(L)$ is cuspidal.

THEOREM. (i) Let $(L, \theta), (L', \theta')$ be cuspidal pairs. Then $\langle R^G_L(\theta), R^G_{L'}(\theta') \rangle = 0$ unless the pairs $(L, \theta), (L', \theta')$ are G-conjugate. (ii) If χ is a character of G, then $\langle \chi, R^G_L(\theta) \rangle \neq 0$ for a cuspidal pair (L, θ) which is unique up to G-conjugacy.

$\text{Irr}(G)$ partitioned into Harish-Chandra families: A family is the set of constituents of $R^G_L(\theta)$ where (L, θ) is cuspidal.
Example: If L is the subgroup of diagonal matrices contained in the (Borel) subgroup B of upper triangular matrices, do Harish-Chandra induction, i.e. lift a character of L to B and do ordinary induction.

But if L is a Levi subgroup not in a parabolic subgroup, e.g. a torus of order $q^n - 1$, we must do Deligne-Lusztig induction to obtain generalized characters from characters of L.
Deligne-Lusztig Theory (applicable to finite reductive groups)

Suppose L is a Levi subgroup, not necessarily in a parabolic subgroup P of G.

The Deligne-Lusztig linear operator:

$$R^G_L : K_0(\overline{Q}L) \rightarrow K_0(\overline{Q}G).$$

R^G_L takes (ordinary) characters of L to \mathbb{Z}-linear combinations of characters of G.

A unipotent character is a constituent of $R^G_T(1)$, T a maximal torus.
Unipotent classes indexed by partitions of n (Jordan form).

unipotent characters of G are constituents of Ind_B^G (not true in general)

Also indexed by partitions of n, denoted by χ_λ, λ a partition of n.
Example: Unipotent characters of $GL(3, q)$, constructed by Harish-Chandra induction, values at unipotent classes

[R. Steinberg, Canadian J. Math. 3 (1951)]

<table>
<thead>
<tr>
<th>$\chi[4]$</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi[31]$</td>
<td>$q^2 + q$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\chi[1^3]$</td>
<td>q^3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Recall the blocks of S_n, described by p-cores.

Theorem (Brauer-Nakayama) χ_λ, χ_μ are in the same p-block if and only if λ, μ have the same p-core.
\(\ell \) a prime not dividing \(q \), \(e \) the order of \(q \) mod \(\ell \)

Theorem (Fong-Srinivasan) \(\chi_\lambda, \chi_\mu \) are in the same \(\ell \)-block if and only if \(\lambda, \mu \) have the same \(e \)-core.

Example: \(n = 5 \), \(\ell \) divides \(q^2 + q + 1 \), \(e = 3 \). Then \(\chi_\lambda \) for \(5, 2^21, 21^3 \) are in a block. Same for \(S_5, p = 3 \).

Example: \(n = 4 \), \(\ell \) divides \(q^2 + 1 \), \(e = 4 \). Then \(\chi_\lambda \) for \(4, 31, 21^2, 1^4 \) are in a block.

\(\quad \) has no 4-hooks.
The ordinary characters in a block can be described via Deligne-Lusztig induction. Brauer meets Lusztig!
Work done on blocks and decomposition matrices for classical groups: Dipper-James, Geck, Gruber, Hiss, Kessar, Malle ...

Describe the unipotent part of the ℓ-modular decomposition matrix of G.

Can write $\chi_\lambda = \sum d_{\lambda \mu} \phi_\mu$ where ϕ_μ are Brauer characters.

Describe $d_{\lambda \mu}$.
M the module induced to G from the trivial character of B, $B =$ Borel=upper triangular matrices

$\text{End}_G(M)$ is isomorphic to The Hecke algebra H_n of type A. Has generators $\{T_1, T_2, \ldots, T_{n-1}\}$ and some relations, e.g.

$T^2_i = (q - 1)T_i + q.1.$

When H_n is not semisimple (q a root of unity) we can talk of its modular representations, blocks, decomposition numbers, etc.

Over a field F, define Specht modules S_λ, irreducible modules L_λ, λ partition of n. Then we want the multiplicity $(S_\lambda : L_\mu)$ (as for S_n).
M the module induced to G from the trivial character of B, $B=$ Borel$=$upper triangular matrices

$\text{End}_G(M)$ is isomorphic to The Hecke algebra H_n of type A. Has generators $\{T_1, T_2, \ldots, T_{n-1}\}$ and some relations, e.g.

$T_i^2 = (q - 1)T_i + q.1$.

When H_n is not semisimple (q a root of unity) we can talk of its modular representations, blocks, decomposition numbers, etc.

Over a field F, define Specht modules S_λ, irreducible modules L_λ, λ partition of n. Then we want the multiplicity $(S_\lambda : L_\mu)$ (as for S_n).
A new object: The q-Schur algebra $S_q(n)$ can be defined over any field, as the endomorphism algebra of a H_n-module.

$\text{char} k = \ell$. Then $S_q(n) = \text{End}_{H_n} \oplus M_\lambda$, M_λ are certain permutation H_n-modules.

$S_q(n)$ and H_n are in q-Schur-Weyl duality!
A new object: The q-Schur algebra $S_q(n)$ can be defined over any field, as the endomorphism algebra of a H_n-module.

$\text{char} k = \ell$. Then $S_q(n) = \text{End}_{H_n} \oplus M_\lambda$, M_λ are certain permutation H_n-modules.

$S_q(n)$ and H_n are in q-Schur-Weyl duality!
$S_q(n)$ has Weyl modules, simple modules analogous to Specht modules, simple modules for H_n or S_n.

Here $S_q(n)$ is over k and we can talk of its decomposition numbers, from its Weyl modules and simple modules over k, as $(W_\lambda : L_\lambda)$.

Theorem (Dipper-James) The decomposition matrix of $S_q(n)$ over a field of characteristic ℓ is the same as the unipotent part of the decomposition matrix of G.
An example of a decomposition matrix D for $n = 4$, $e = 4$:

\[
\begin{pmatrix}
4 & 1 & 0 & 0 & 0 \\
31 & 1 & 1 & 0 & 0 \\
211 & 0 & 1 & 1 & 0 \\
1111 & 0 & 0 & 1 & 1 \\
\end{pmatrix}
\]
New modular representation theory connects decomposition numbers for symmetric groups, Hecke algebras, q-Schur algebras, with Lie theory.

The quantized Kac-Moody algebra $U_v(\widehat{sl}_e)$ over $\mathbb{Q}(v)$ is generated by $e_i, f_i, k_i, k_i^{-1}, \ldots, (0 \leq i \leq e - 1)$ with some relations.
New modular representation theory connects decomposition numbers for symmetric groups, Hecke algebras, q-Schur algebras, with Lie theory.

The quantized Kac-Moody algebra $\mathcal{U}_v(\widehat{sl}_e)$ over $\mathbb{Q}(v)$ is generated by $e_i, f_i, k_i, k_i^{-1}, \ldots$, $(0 \leq i \leq e - 1)$ with some relations.
Fock space: $\mathbb{Q}(\nu)$-vector space with basis s_λ where λ runs over the partitions of $n \geq 0$. Can think of the s_λ as indexing
(1) the Weyl modules of $S_q(n)$ over a field of characteristic 0 with q a primitive e-th root of unity, $n \geq 0$
(2) unipotent characters of $GL(n, q)$, $n \geq 0$
Then $\mathcal{U}_v(\widehat{sl}_e)$ acts on the Fock space! e_i, f_i are functors on the Fock space, called i-induction, i-restriction (as in the case of S_n). Blocks appear as weight spaces for the subalgebra generated by the k_i.

Work of Ariki, Grojnowski, Vazirani, Lascoux-Leclerc-Thibon, Varagnolo-Vasserot, ...
Decomposition matrix D for the q-Schur algebra $S_q(n)$ over K with q an e-th root of unity, entries $d_{\lambda\mu}$, can be determined in principle. This does not give D for G, as the Dipper–James Theorem is for characteristic ℓ.
Decomposition matrix D for the q-Schur algebra $S_q(n)$ over K with q an e-th root of unity, entries $d_{\lambda\mu}$, can be determined in principle. This does not give D for G, as the Dipper–James Theorem is for characteristic \mathfrak{l}.
Summary

- Known: Decomposition numbers for H_n (also cyclotomic Hecke algebras) over characteristic 0
- Known: Decomposition numbers for $GL_n(q)$, ℓ large
- Not known: Decomposition numbers for S_n, $GL_n(q)$, all ℓ
References:

A. Mathas, Iwahori Hecke Algebras and Schur algebras of the symmetric group, University Lecture Series 15, AMS (1999).

B. Srinivasan, Modular Representations, old and new, in Springer PROM (2011)