Quadratic unipotent blocks of general linear, unitary and symplectic groups

Bhama Srinivasan

University of Illinois at Chicago

June 2009
G is a connected reductive algebraic group defined over \mathbb{F}_q,
$F : G \rightarrow G$ a Frobenius morphism,
$G = G^F$ is a finite reductive group.

Examples: $GL(n, q)$, $U(n, q)$, $Sp(2n, q)$, $SO^{\pm}(2n, q)$

G has subgroups maximal tori, Levi subgroups (centralizers of tori)
Let ℓ be a prime not dividing q.
Suppose L is an F-stable Levi subgroup.

- **The Deligne-Lusztig linear operator:**

 $R^G_L : K_0(\mathbb{Q}_L) \to K_0(\mathbb{Q}_G)$.

- The unipotent characters of G are the irreducible characters χ in $R^G_T(1)$ as T runs over F-stable maximal tori of G.

If L is in an F-stable parabolic subgroup P,

R^G_L is just Harish-Chandra induction.
Let ℓ be a prime not dividing q.
Suppose L is an F-stable Levi subgroup.

- The Deligne-Lusztig linear operator:

$$R^G_L : K_0(\overline{Q}_1L) \to K_0(\overline{Q}_1G).$$

- The unipotent characters of G are the irreducible characters χ in $R^G_T(1)$ as T runs over F-stable maximal tori of G.

If L is in an F-stable parabolic subgroup P,
R^G_L is just Harish-Chandra induction.
Lusztig classification of complex characters is in good shape.
\[
\text{Irr}(G) = \bigcup \mathcal{E}(G, (s)), \text{ union of Lusztig series, } (s) \subset G^*, \text{ a semisimple conjugacy class.}
\]
K a sufficiently large field of characteristic 0
\mathcal{O} a complete discrete valuation ring with quotient field K

The ordinary characters or KG-modules are partitioned into blocks corresponding to the decomposition of $\mathcal{O}G$ into indecomposable two-sided ideals called block algebras.
Classification of blocks

G is a finite reductive group, e.g. a classical group. ℓ a prime not dividing q.

Problem: Describe the ℓ-blocks of G.

A unipotent block is a block which contains unipotent characters. Describe the unipotent blocks.
Let $G = GL(n, q)$, e the order of q mod ℓ. The unipotent characters of G are constituents of the permutation representation on the cosets of the subgroup B of upper triangular matrices. They are indexed by partitions of n. Say χ_λ corresponds to the partition λ.

Theorem (Fong-Srinivasan, 1982) χ_λ, χ_μ are in the same ℓ-block if and only if λ, μ have the same e-core.

Proof involves Deligne-Lusztig theory and Brauer theory. These two theories are compatible!
\[G = Sp(2n, q), \ SO(2n + 1, q), \ SO^\pm(2n, q), \]

A symbol \(\Lambda \) is a pair \((S, T) \) of subsets of \(\mathbb{N} \).

Notion of e-hooks, e-cohooks, e-cores of symbols defined.

\[
\begin{pmatrix}
0 & 1 & 2 \\
1 & 3 & \end{pmatrix},
\begin{pmatrix}
0 & 1 & 4 \\
1 & 3 & \end{pmatrix},
\begin{pmatrix}
0 & 1 & 1 \\
1 & 3 & 4 & \end{pmatrix}
\]

The second symbol comes from the first by adding a 2-hook.

The third symbol comes form the first by adding 2-cohook.
In $G = \text{CSp}(2n, q), \text{SO}(2n + 1, q), \text{CSO}^\pm(2n, q)$, unipotent characters are parameterized by symbols.

q and ℓ odd, e the order of q mod ℓ.

Unipotent blocks are again classified by e-cores of symbols. (Fong-Srinivasan, 1989)

THEOREM $\psi_{\Lambda_1}, \psi_{\Lambda_2}$ are in the same ℓ-block if and only if the symbols Λ_1, Λ_2 have the same e-core.
e-Harish-Chandra theory for unipotent characters: The Lusztig series $\mathcal{E}(G, 1)$ is partitioned into families.

The characters in a family are constituents of $R_L^G(\psi)$ where L is an “e-split Levi subgroup”, ψ a unipotent “e-cuspidal” character of L. Then (L, ψ) is called an e-cuspidal pair.

$e = 1$ gives the usual Harish-Chandra theory.
THEOREM (Cabanes-Enguehard) Let B be a unipotent block of G, ℓ odd. Then the unipotent characters in B are precisely the constituents of $R^G_L(\psi)$ where the pair (L, ψ) is e-cuspidal.

Thus we have a fit of Brauer theory and Lusztig theory. The subgroup $N_G(L)$ here plays the role of a "local subgroup".

EXAMPLE. $GL(n,q)$: $L \cong T_1 \times T_2 \times \ldots T_r \times GL(m,q)$, where the T_i are tori of order $q^e - 1$ and $\psi = 1 \times \chi_\lambda$, λ an e-core.
THEOREM (Cabanes-Enguehard) Let B be a unipotent block of G, ℓ odd. Then the unipotent characters in B are precisely the constituents of $R^G_L(\psi)$ where the pair (L, ψ) is e-cuspidal.

Thus we have a fit of Brauer theory and Lusztig theory. The subgroup $N_G(L)$ here plays the role of a ”local subgroup”.

EXAMPLE. $\text{GL}(n,q)$: $L \cong T_1 \times T_2 \times \ldots T_r \times \text{GL}(m,q)$, where the T_i are tori of order $q^e - 1$ and $\psi = 1 \times \chi_\lambda$, λ an e-core.
THEOREM (Cabanes-Enguehard) Let B be a unipotent block of G, ℓ odd. Then the unipotent characters in B are precisely the constituents of $R^G_L(\psi)$ where the pair (L, ψ) is e-cuspidal.

Thus we have a fit of Brauer theory and Lusztig theory. The subgroup $N_G(L)$ here plays the role of a "local subgroup".

EXAMPLE. $\text{GL}(n,q)$: $L \cong T_1 \times T_2 \times \ldots T_r \times \text{GL}(m,q)$, where the T_i are tori of order $q^e - 1$ and $\psi = 1 \times \chi_\lambda$, λ an e-core.
Arbitrary ℓ-block B of G determines a conjugacy class (s) in a dual group G^* of G, where $s \in G^*$ is an ℓ'-semi simple element. Then one hopes for a Jordan decomposition of blocks, i.e. a unipotent block of $C_{G^*}(s)$ sharing some properties with B.
Some modern problems of modular representation theory:

G is a finite reductive group, H some related group, e.g. another finite reductive group, $N_G(L)$, L Levi in G, or $C_G^*(s)$ for some s.

Block B of G, block b of H

- (Broué) Establish a perfect isometry between B and b (over K)
- (BADC) (Broué’s abelian defect group conjecture) derived equivalence of blocks between $\mathcal{O}B$ and $\mathcal{O}b$
- Morita equivalence between $\mathcal{O}B$ and $\mathcal{O}b$
Bonnafe-Rouquier: If B corresponds to $s \in G^*$ where $C_{G^*}(s)$ is contained in a Levi subgroup, there is a Morita equivalence between B and a unipotent block of b.
Block B of G, block b of H:
A perfect isometry is a bijection between $K_0(B)$ and $K_0(b)$ preserving certain invariants of B and b.
Leads to:

- B and b have the same number of ordinary and modular irreducible characters
- Cartan matrices of the blocks B and b define the same integral quadratic form.
Some results on perfect isometries, when the defect group of the blocks are abelian:

- Broué, Malle, Michel: perfect isometries between unipotent blocks of finite reductive groups and normalizers of Levi subgroups (abelian defect groups)
- Rouquier: Between two symmetric groups ("equal weight")
- Enguehard: Between two general linear groups ("equal weight")

Stronger results due to Chuang-Rouquier: BADC for general linear groups
Question: Perfect isometries between groups of different Lie types? A possibility?

Example: $GL(4, q)$ and $Sp(4, q)$, ℓ divides $q + 1$. There is one block correspondence between principal blocks. But $GL(4, q)$ has 5 unipotent characters in one block, $Sp(4, q)$ has 6 unipotent characters, 5 in one block and 1 in one block.
Question: Perfect isometries between groups of different Lie types? A possibility?

Example: $GL(4, q)$ and $Sp(4, q)$, ℓ divides $q + 1$. There is one block correspondence between principal blocks. But $GL(4, q)$ has 5 unipotent characters in one block, $Sp(4, q)$ has 6 unipotent characters, 5 in one block and 1 in one block.
Inspiration

p-adic groups, James Arthur: ”We shall describe a classification of automorphic representations of classical groups in terms of those of general linear groups (endoscopic group)”

Waldspurger’s papers
Inspiration

p-adic groups, James Arthur: "We shall describe a classification of automorphic representations of classical groups in terms of those of general linear groups (endoscopic group)"

Waldspurger’s papers
Inspiration

p-adic groups, James Arthur: ”We shall describe a classification of automorphic representations of classical groups in terms of those of general linear groups (endoscopic group)”

Waldspurger's papers
Enlarge the set of unipotent characters.

G is a finite reductive group.

$Irr(G) = \bigcup \mathcal{E}(G, (s))$, union of Lusztig series, $(s) \subset G^*$, a semisimple conjugacy class.

(Waldspurger) If $s^2 = 1$, characters in $\mathcal{E}(G, (s))$ are called quadratic unipotent (special case: unipotent, $s = 1$).
$G_n = GL(n, q)$ or $U(n, q)$, q odd.

Quadratic unipotent characters are parameterized by pairs of partitions (μ_1, μ_2) of k_i, $i = 1, 2$ resp., with $k_1 + k_2 = n$.

$H_n = Sp(2n, q)$. Unipotent characters parameterized by (equivalence classes of) symbols.

Quadratic unipotent characters parameterized by (equivalence classes of) pairs of symbols (Λ_1, Λ_2) where

Λ_1: unordered symbol of rank k_1

Λ_2: ordered symbol of rank k_2, $k_1 + k_2 = n$.

$C_{G^*}(s)$ can be disconnected, e.g $(SO(2k_1 + 1) \times SO^\pm(2k_2)) \rtimes Z_2$
Notation: $\text{Irr}(G_n)_{qu}$, $\text{Irr}(H_n)_{qu}$ for quadratic unipotent characters, W_n is the Weyl group of type B_n.

Waldspurger’s Parametrization of $\text{Irr}(G_n)_{qu}$:

$$(\mu_1, \mu_2) \leftrightarrow \{(m_1, m_2, \rho_1, \rho_2)\}$$

$m_1, m_2 \in \mathbb{N}, \rho_i \in \text{Irr}(W_{N_i}), i = 1, 2$

$$m_1(m_1 + 1)/2 + m_2(m_2 + 1)/2 + 2N_1 + 2N_2 = n$$

Here m_i, ρ_i come from the 2-core and the 2-quotient of μ_i.
Example:

$\chi_{(21,1)}$ is 2-cuspidal (no 2-core), in $\text{Irr}(GL(4))_{qu}$. In $GL(6)$, $\chi_{(41,1)}$ is obtained by Lusztig induction from $L = GL(4) \times T_{q^2-1}$, with $\rho_1 = (1, -)$. Then $(m_1, m_2, \rho_1, \rho_2) = (2, 1, (1, -), -)$.

\[
\begin{pmatrix}
* & * & * & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
* & * & + & +
\end{pmatrix}
\rightarrow
\begin{pmatrix}
* & *
\end{pmatrix}
\]
Waldspurger’s Parametrization of $\text{Irr}(H_n)_{qu}$:

$$\text{Irr}(H_n)_{qu} \leftrightarrow \{(h_1, h_2, \rho_1, \rho_2)\}$$

$$h_1 \in \mathbb{N}, h_2 \in \mathbb{Z}, \rho_i \in \text{Irr}(W_{N_i}), i = 1, 2$$

$$h_1(h_1 + 1) + h_2^2 + N_1 + N_2 = n$$
Waldspurger’s bijection:

\((m_1, m_2) \leftrightarrow (h_1, h_2)\), where

\[m_1 = \sup(h_1 + h_2, h_1 - h_2 - 1), \quad m_2 = \sup(h_1 - h_2, h_2 - h_1 - 1)\]

\[
\{2 \text{ – cuspidals } \in \text{Irr}(G_n)_{qu}\} \leftrightarrow \{1 \text{ – cuspidals } \in \text{Irr}(H_n)_{qu}\}\]
Extend bijection to

\[\{\text{Irr}(G_n)_{qu}\} \leftrightarrow \{\text{Irr}(H_m)_{qu}\} \]

by

\[\{(m_1, m_2, \rho_1, \rho_2)\} \leftrightarrow \{(h_1, h_2, \rho_1, \rho_2)\} \]

\[m_1(m_1 + 1)/2 + m_2(m_2 + 1)/2 + 2N_1 + 2N_2 = n \]

,

\[h_1(h_1 + 1) + h_2^2 + N_1 + N_2 = m \]
Example: $|\text{Irr}(Sp(4, q))_{qu}| = 23$, bijection of 14 with $GL(4, q)$, 8 with $GL(3, q)$, 1 with $GL(2, q)$.

$\theta_{10} \in \text{Irr}(Sp(4, q)) \leftrightarrow \chi_{(1,1)} \in \text{Irr}(GL(2, q))_{qu}$

Note θ_{10} unipotent, $\chi_{(1,1)} \in \mathcal{E}(G, (s))$ with s of order 2, $m_1 = 1, m_2 = 1, h_1 = 1, h_2 = 0$.
Example: \(|\text{Irr}(GL(4, q))_{qu}| = 20\), bijection of 14 with \(Sp(4, q)\), 4 with \(Sp(6, q)\), 2 with \(Sp(8, q)\).

Two with \(Sp(8, q)\) are \(\chi_{(21,1)}, \chi_{(1,21)}\), 2-cuspidal, also correspond to cuspidal unipotent characters of \(O^-(8, q)\). Here \(m_1 = 2, m_2 = 1, h_1 = 0, h_2 = \pm 2\).
K a sufficiently large field of characteristic 0.

L_n the category of quadratic unipotent representations of G_n over K, M_n the same for H_n.

THEOREM With the usual inner product, there is an isometry between $\bigoplus_{n \geq 0} K_0(L_n)$ and $\bigoplus_{n \geq 0} K_0(M_n)$.

Also: Both isomorphic to $\mathbb{Z}[N \times N] \times \bigoplus_{n,m \geq 0} K_0(\mathcal{H}_n \mod) \times K_0(\mathcal{H}_m \mod)$, \mathcal{H}_n Hecke algebra of type B_n.
K a sufficiently large field of characteristic 0.

L_n the category of quadratic unipotent representations of G_n over K, M_n the same for H_n.

THEOREM With the usual inner product, there is an isometry between $\bigoplus_{n \geq 0} K_0(L_n)$ and $\bigoplus_{n \geq 0} K_0(M_n)$.

Also: Both isomorphic to $\mathbb{Z}[N \times N] \times \bigoplus_{n,m \geq 0} K_0(\mathcal{H}_n - \text{mod}) \times K_0(\mathcal{H}_m - \text{mod})$, \mathcal{H}_n Hecke algebra of type B_n.

K a sufficiently large field of characteristic 0.

L_n the category of quadratic unipotent representations of G_n over K, M_n the same for H_n.

THEOREM With the usual inner product, there is an isometry between $\bigoplus_{n \geq 0} K_0(L_n)$ and $\bigoplus_{n \geq 0} K_0(M_n)$.

Also: Both isomorphic to

$\mathbb{Z}[N \times N] \times \bigoplus_{n,m \geq 0} K_0(\mathcal{H}_n - \text{mod}) \times K_0(\mathcal{H}_m - \text{mod})$, \mathcal{H}_n Hecke algebra of type B_n.

Theorem on unipotent blocks of $G = Sp(2n, q)$, $SO(2n + 1, q)$, $SO^{\pm}(2n, q)$ generalized to “quadratic unipotent” blocks.

EXAMPLE. $H_n = Sp(2n, q)$: quadratic unipotent characters in a block are constituents of $R^H_n(\psi)$,

$L \cong T_1 \times T_2 \times \ldots T_{M_1} \times T_1 \times T_2 \times \ldots T_{M_2} \times Sp(2m, q)$, where the T_i are tori of order $q^f - 1$ and $\psi = 1 \times \mathcal{E} \times \chi_{\Lambda_1, \Lambda_2}$, Λ_1 and Λ_2 are f-cores.

Quadratic unipotent blocks classified by e-cores of pairs of symbols and weights.

Theorem on unipotent blocks of $G = Sp(2n, q), SO(2n + 1, q), SO^\pm(2n, q)$ generalized to “quadratic unipotent” blocks.

EXAMPLE. $H_n = Sp(2n, q)$: quadratic unipotent characters in a block are constituents of $R^H_n(\psi)$, $L \cong T_1 \times T_2 \times \ldots T_{M_1} \times T_1 \times T_2 \times \ldots T_{M_2} \times Sp(2m, q)$, where the T_i are tori of order $q^f - 1$ and $\psi = 1 \times \mathcal{E} \times \chi_{\Lambda_1, \Lambda_2}$, Λ_1 and Λ_2 are f-cores.

Quadratic unipotent blocks classified by e-cores of pairs of symbols and weights.
Fix an odd prime ℓ, e the order of $q \mod \ell$, $e = 2f$.

Let f be odd. COMPARE:

$G_n = U(n, q)$ and $H_n = Sp(2n, q), \ q > n, \ \ell \text{ divides } q^f - 1$

$G_n = GL(n, q)$, and $H_n = Sp(2n, q), \ q > n,$

$\ell \text{ divides } q^f + 1$.

Also: $e = 2f$ where f is even, i.e. $e \equiv 0 \pmod{4}$ and ℓ divides $q^f + 1$. Exclude $e \equiv 2 \pmod{4}$.
THEOREM Let q, ℓ be odd, and $q > n$. There are ℓ-block correspondences between blocks B of G_n and blocks b of H_n as follows:

(i) ℓ divides $q^f - 1$, f odd, B a quadratic-unipotent ℓ-block of $U(n, q)$ and b a quadratic-unipotent ℓ-block of $Sp(2m, q)$, some m

(ii) ℓ divides $q^f + 1$, f odd, B a quadratic-unipotent ℓ-block of $GL(n, q)$ and b a quadratic-unipotent ℓ-block of $Sp(2m, q)$, some m

There is a natural bijection between quadratic-unipotent characters in B and b.

When the defect groups are abelian, the defect groups are isomorphic and there is a perfect isometry between B and b.
Let $Bl(G_n)_{qu}$ (resp. $Bl(H_n)_{qu}$) be the set of quadratic unipotent blocks of G_n (resp. H_n), ℓ divides $q^f - 1$ or $q^f + 1$ as above.

There is a bijection

$$\bigsqcup_{n \geq 0} Bl(G_n)_{qu} \leftrightarrow \bigsqcup_{n \geq 0} Bl(H_n)_{qu},$$

such that if $B \rightarrow b$, there is a natural bijection between quadratic-unipotent characters in B and b.
IDEA

Use the following correspondences:

\[B \longleftrightarrow 2f - \text{core}(\lambda_1, \lambda_2) \longleftrightarrow \{(m_1, m_2, \rho_1, \rho_2)\} \longleftrightarrow \{(h_1, h_2, \rho_1, \rho_2)\} \longleftrightarrow f - \text{core}(\Lambda_1, \Lambda_2) \longleftrightarrow b \]

\[m_1(m_1 + 1)/2 + m_2(m_2 + 1)/2 + 2N_1 + 2N_2 = n, \]
\[h_1(h_1 + 1) + h_2^2 + N_1 + N_2 = m. \]
IDEA

Perfect Isometries “across types”:
Use the paper of [BMM] to get an isotopy from B to a local subgroup of G_n of the form $N_{G_n}(L, \lambda)$, then to a local subgroup of H_n, then to b.
Enguehard has defined for a finite reductive group G, $s \in G^*$, a group $G(s)$ (can be called an endoscopy group).

Example: For $H_n = \text{Sp}(2n, q)$, s with $s^2 = 1$, $H_n(s) = \text{Sp}(2m, q) \times \text{O}(2n - 2m, q)$.

We also have correspondences between unipotent blocks of suitable $G_n(s)$ and $H_n(s)$.

Enguehard has defined for a finite reductive group G, $s \in G^*$, a group $G(s)$ (can be called an endoscopy group).

Example: For $H_n = \text{Sp}(2n, q)$, s with $s^2 = 1$,
$H_n(s) = \text{Sp}(2m, q) \times \text{O}(2n - 2m, q)$.

We also have correspondences between unipotent blocks of suitable $G_n(s)$ and $H_n(s)$.
Enguehard has defined for a finite reductive group G, $s \in G^*$, a group $G(s)$ (can be called an endoscopy group).

Example: For $H_n = Sp(2n, q)$, s with $s^2 = 1$, $H_n(s) = Sp(2m, q) \times O(2n - 2m, q)$.

We also have correspondences between unipotent blocks of suitable $G_n(s)$ and $H_n(s)$.
Here $Bl(G_n)_u$ denotes the set of unipotent blocks of G_n.

There is a bijection

\[
\bigsqcup_{n_1,n_2 \geq 0} Bl(G_{n_1} \times G_{n_2})_u \leftrightarrow \bigsqcup_{n_1,n_2 \geq 0} Bl(Sp_{2n_1} \times O_{2n_2})_u,
\]

such that if $B \rightarrow b$, there is a natural bijection between quadratic-unipotent characters in B and b.
SUMMARY

\[\bigoplus_{n \geq 0} K_0(GL_n - \text{mod})_{qu} \cong \bigoplus_{n \geq 0} K_0(Sp_{2n} - \text{mod})_{qu}. \]

\[\bigoplus_{n_1, n_2 \geq 0} K_0((GL_{n_1} \times GL_{n_2}) - \text{mod})_u \cong \bigoplus_{n_1, n_2 \geq 0} K_0((Sp_{2n_1} \times O_{2n_2}) - \text{mod})_u. \]
SUMMARY

For suitable \(\ell \): \(\bigsqcup_{n \geq 0} Bl(GL_n)_{qu} \leftrightarrow \bigsqcup_{n \geq 0} Bl(Sp_{2n})_{qu} \)

\(\bigsqcup_{n_1, n_2 \geq 0} Bl(G_{n_1} \times G_{n_2})_u \leftrightarrow \bigsqcup_{n_1, n_2 \geq 0} Bl(Sp_{2n_1} \times O_{2n_2})_u \)
What more can we say about this correspondence between blocks of general linear/unitary groups and blocks of symplectic groups? Are corresponding blocks derived equivalent? Morita equivalent?

Has the symplectic group reached equal status with the general linear group, her "all-embracing majesty"?
What more can we say about this correspondence between blocks of general linear/unitary groups and blocks of symplectic groups? Are corresponding blocks derived equivalent? Morita equivalent? Has the symplectic group reached equal status with the general linear group, her "all-embracing majesty"?

