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S u m m a r y

This treatise explores the “galaxy” of integrally closed domains through arithmetic properties

of rings, starting with standard domain class inclusions

{Euclidean domains} ( {PIDs} ( {UFDs} ( {GCDDs},

and with a special emphasis on square number fields and their rings of integers, square

number rings.

Through this treatise, the author demonstrates the breadth of her background, training

and ability in writing mathematics; some portions are written and typeset as standard

mathematical prose, others are structured to break and flow like poetry. In the latter case,

exposition is secondary to symbolic manipulation.
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I. C a t a l o g o f A r i t h m e t i c P r o p e r t i e s i n

D o m a i n s

Throughout this part, I use A to denote an integral domain. That is, I take A to be

a commutative, unital ring with 1A 6= 0 and no zero divisors. I use the term domain to

mean integral domain for convenience. One should assume domains are commutative unless

otherwise specified. For such a domain, I use U(A) to denote its group of units.

Any corrections or suggestions should be sent to stephanie @ math.uic.edu.

 Divisibility Class Arithmetic

In this section, we formally explore divisibility as a relational property between domain

elements. In particular, this section contains a rigorous proof that divisibility association

gives an equivalence relation on a domain.

Definition 1.1. An element a ∈ A divides an element b ∈ A

(equivalently, an element b ∈ A is a multiple of an element a ∈ A)

if there exists c ∈ A such that b = a c.

Notational Note. If a, b ∈ A are such that a divides b

(equivalently, if b ∈ A is a multiple of a ∈ A), we write a | b.

Further, if a | b, we may say that “a is a divisor or factor of b.”

mailto:stephanie@math.uic.edu
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. Domain Divisibility Properties

Proposition 1.2 (Domain Divisibility Properties). For a, b, c, d1, . . . , dn ∈ A,

the following divisibility properties hold:

i. (Reflexivity) Any element a ∈ A divides itself. That is, if a ∈ A then a | a.

Proof. There is an identity element 1 ∈ A such that, for every a ∈ A,

a = a 1 = 1 · a. (∗)

Note that (∗) is equivalent to “a is a multiple of a” which is equivalent to

“a divides a” by Definition 1.1. Thus, if a ∈ A then a | a.

ii. (Symmetry) The elements a ∈ A and b ∈ A divide each other if and only

if they differ by a unit factor. That is, a | b and b | a if and only if there

exists u ∈ U(A) such that b = u · a.

Proof
=⇒ . First, assume a | b and b | a. Then, there exist c, c′ ∈ A such that

a = b c′ = c′ b (a)

and b = a c = c a. (b)

Substituting Equation (a) into Equation (b), we have

1 · b = b = c (c′ b) = (c′ c) b. (c)

Since 1 ∈ A is unique, Equation (c) implies that 1 = c′ c

which further implies that c =: u ∈ U(A). Thus, b = u · a, as desired.
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Proof⇐= . Now, assume there is some u ∈ U(A) such that

b = u · a = a u. (∗)

Since b = a u, we can say that a | b by Definition 1.1.

Further, since u ∈ U(A), there is some u′ ∈ A such that

u u′ = u′ u = 1.

Multiplying both sides of Equation (∗) by u′ gives

b u′ = (a u) u′

= a (u u′)

= a 1

= a.

Thus, a = b u′ which means that b | a by Definition 1.1.

iii. (Transitivity) All divisors of an element divide all multiples of that element.

That is, if a | b and b | c then a | c.

Proof. Since a | b, there is some d ∈ A such that

b = a d (a)

and, since b | c, there is some d′ ∈ A such that

c = b d′. (b)



4

We now use Equation (a) to re-express Equation (b) as

c = (a d) d′ = a (d d′).

Thus, there is an element c′ := dd′ ∈ A such that c = a c′.

Thus, a | c.

iv. If an element divides all elements of a finite subset of A, then that element

divides any A-linear combination of subset elements.

That is, if a | di for all 1 6 i 6 n, then a | a1 d1 + · · ·+ an dn

for any subset {a1, . . . , an} ⊂ A.

Proof. Given that a | di for all 1 6 i 6 n, we know that there exists some

ci ∈ A such that di = a ci for all 1 6 i 6 n. Thus, for any subset

{a1, . . . , an} ⊂ A, we have

a1 d1 + · · ·+ an dn = a1 (a c1) + · · ·+ an (a cn)

= (a1 a) c1 + · · ·+ (an a) cn

= (a a1) c1 + · · ·+ (a an) cn

= a (a1 c1) + · · ·+ a (an cn)

= a (a1 c1 + · · ·+ an cn).

Since c := a1c1 + · · ·+ ancn ∈ A for any subset {a1, . . . , an} ⊂ A, we have

(a1 d1 + · · ·+ an dn) = a c

which means that a | a1 d1 + · · ·+ an dn.
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v. If A is a domain and a, b ∈ A then a | b if and only if Ab ⊆ Aa.

Proof
=⇒ . Assuming a | b, we know that there exists c ∈ A such that c a = b.

This implies that b ∈ Aa := { c a : c ∈ A } and further implies

Ab ⊆ AAa : = {d c a : d, c ∈ A}

= {(d c) a : d, c ∈ A}

= {a′ a : a′ = d c ∈ A ∀d, c ∈ A}

= {a′ a : a′ ∈ A}

= Aa,

concluding the proof.

Proof⇐= . Assuming Ab ⊆ Aa, we know that for all β ∈ Ab there exists an

α ∈ A such that β = α a. Since 1 ∈ A and since b = 1 · b ∈ Ab,

this means that there exists an αb ∈ A such that b = αb a,

implying that a | b.

. Divisibility Associate Equivalence

In this subsection, we explicate the reflexive, symmetric and transitive properties of

divisibility given above into a formal equivalence relation, called divisibility association.

Definition 1.3. If a ∈ A and b ∈ A differ by a unit factor, we call a and b

associates with respect to divisibility

(equivalently, we say a and b are associated in divisibility).

In other words, if a, b ∈ A are such that u · b = a for some unit u ∈ U(A),

we say that “a is associate to b with respect to divisibility” and write a + b.
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Proposition 1.4. Divisibility association gives an equivalence relation on A.

Remark. The following proofs are analogous to the proofs in Proposition 1.2.

i. Reflexive. For every element a ∈ A, we have that a + a.

Recall. D i v i s i b i l i t y i s a r e f l e x i v e p r o p e r t y .

That is, for every a ∈ A, we have a | a.

Proof. The multiplicative identity element 1 ∈ A is a unit and satisfies

a = a 1 = 1 · a.

Thus, a + a by Definition 1.3.

ii. Symmetric. For any two elements a, b ∈ A such that a + b,

we also have that b + a.

Recall. D i v i s i b i l i t y i s a s y m m e t r i c p r o p e r t y .

That is, a | b and b | a if and only if there exists u ∈ U(A)

such that u · a = b.

Proof. If a + b, there exists u ∈ U(A) such that u · a = b.

Further, since u ∈ U(A), there is some u−1 ∈ U(A) such that

u u−1 = u−1 u = 1.

Thus, u−1 · b = u−1 · (u · a) = (u−1 u) · a = 1 · a = a,

implying that u−1 · b = a. Hence, b + a.

iii. Transitive. If a, b, c ∈ A are such that a + b and b + c, then a + c.

Recall. D i v i s i b i l i t y i s a t r a n s i t i v e p r o p e r t y .
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That is, if a | b and b | c then a | c.

Proof. Since a + b, there is some u ∈ U(A) such that

u · a = b (a)

and, since b + c, there is some u′ ∈ U(A) such that

u′ · b = c. (b)

Using Equation (a), we re-express Equation (b) as

c = u′ · (u · a) = (u′ u) · a.

Thus u′ u ∈ U(A), which means that a + c.

We now encounter the first distinctive class of divisibility associates covered in this

treatise. The following remark states that the group of units U(A) of a domain

A form an equivalence class of elements which are associate to the multiplicative

identity element 1 ∈ A. In other words, divisibility association classifies all invertible

elements in a domain as equivalent to the multiplicative identity.

Remark 1.5. An element of A is an associate of the multiplicative identity in A if

and only if it is a unit ( equivalently, a + 1 if and only if a ∈ U(A) ).

Proof
=⇒ . First, assume a + 1. By Definition 1.3, this means that there is some

u ∈ U(A) such that u · a = 1. Thus, a ∈ U(A).

Proof⇐= . Now, assume a ∈ U(A). This means there exists some a′ ∈ U(A) such

that a a′ = a′ a = 1. Thus, a + 1 by definition.
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Remark 1.6. If A is a domain and a, b ∈ A then

i. a + b if and only if Ab = Aa; and

ii. Remark 1.5 holds ⇐⇒ Aa = A.

i.
Proof
=⇒ . First, assume a + b (similarly, b + a). Then, there exists u ∈ U(A)

such that u a = b (similarly, there exists u′ ∈ u(A) such that u′ b = a).

This implies that b ∈ Aa (similarly, a ∈ Aa). Thus Ab ⊆ Aa (similarly,

Aa ⊆ Ab), implying that Ab = Aa.

i.
Proof⇐= . Now, assume Ab = Aa. This implies that Ab ⊆ Aa (and that

Ab ⊇ Aa), further implying that for all β ∈ Ab there exists α ∈ A such

that β = α a (and further implying that for all α ∈ Aa there exists

β ∈ A such that α = β b). Since b = 1 · b ∈ Ab, this means that there

exists an αb ∈ A such that b = αb a (and since a = 1 · a ∈ Aa, this

means that there exists βa ∈ A such that a = βa b). Thus,

b = αb (βa b),

1 · b = (αb βa) b,

1 = αb βa,

implying that αb, βa ∈ U(A) and, finally, implying that a + b.

ii.
Proof
=⇒ . Assume there exists u ∈ U(A) ⊆ A such that u · a = 1. This

implies that 1 ∈ Aa which further implies that A ⊆ AAa. Thus, A ⊆ Aa.

Further, assuming Remark 1.5, it is clear that Aa ⊆ A. Thus, since Aa ⊆ A

and A ⊆ Aa we have Aa = A.

ii.
Proof⇐= . If Aa = A, there exists b ∈ A such that b a = 1 which implies

that a ∈ U(A) if and only if a = 1.
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 Specific Classes of Associates

In the previous section, we formally defined divisibility as an equivalence relation. Now, we

deepen our understanding of this relational property by defining specific divisibility classes of

shared factors/multiples for pairs of domain elements.

In this discussion of greatest common divisors and least common multiples we take care

to emphasize that the existence of such classes of associates is not always guaranteed for

any given pair of elements in an arbitrary domain. We introduce greatest common divisor

domains, domains for which there exists a greatest common divisor for every pair of elements,

and give an example of a domain which is not a greatest common divisor domain.

Any corrections or suggestions should be sent to stephanie @ math.uic.edu.

. Greatest Common Divisors

Definition 2.1. An element d ∈ A is called a greatest common divisor of

two elements a, b ∈ A if

i. d divides a (d | a),

ii. d divides b (d | b) and

iii. any element which divides both a and b also divides d

(any d′ ∈ A such that d′ | a and d′ | b is also such that d′ | d).

(Clarifying) Remark 2.2. If such an element d ∈ A exists for the pair a, b ∈ A,

then it is unique only up to association in divisibility. I use gcd(a, b) to denote the

equivalence class of associates of d. I may also say that d ∈ gcd(a, b). To denote

a representative element of the equivalence class, I may use gcd(a, b).

mailto:stephanie@math.uic.edu
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Proposition 2.3. Suppose A is a domain for which there exists gcd(a, b) ∈ A

for every pair of elements a, b ∈ A.

Then, letting a, b, c ∈ A, the following properties hold:

i. Any greatest common divisor of an arbitrary nonzero element and the additive

identity, zero, is associate to the nonzero arbitrary element (gcd(a, 0) + a);

Proof. Since a | a and a | 0, it follows that a | gcd(a, 0).

Since gcd(a, 0) | a by definition, we conclude gcd(a, 0) + a.

ii. gcd(a, b) + a if and only if a | b;

Proof
=⇒ . If gcd(a, b) + a, there exists u ∈ U(A) such that gcd(a, b) = u · a.

Thus, a | gcd(a, b) and, because gcd(a, b) | b, we can conclude a | b.

Proof⇐= . Suppose a | b. Then a | a, a | b, and any d′ such that d′ | a

and d′ | b trivially satisfies d′ | a. So gcd(a, b) + a.

iii. if d = gcd(a, b) is a representative greatest common divisor of distinct,

nonzero elements a, b ∈ A and if a′, b′ ∈ A are such that a = d a′ and

b = d b′, then gcd(a′, b′) + 1;

Proof. Let d′ be such that d′ | a′ and d′ | b′. Then d d′ | d a′ = a

and d d′ | d b′ = b, so d d′ | d because d = gcd(a, b). Then there exists

c ∈ A such that d = c d d′, so c d′ = 1 and thus d′ ∈ U(A). Thus we

have that gcd(a′, b′) + 1.

iv. gcd(ac, bc) + c · gcd(a, b); and

Proof. Let d := gcd(a, b) and let d′ be such that d′ | a c and d′ | b c.

By part iii., there exists a′ and b′ such that a = d a′, b = d b′,

and gcd(a′, b′) + 1. Then d′ | c d a′ and d′ | c d b′. If d′ - c d there
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would exist d′′ which is not a unit such that d′ | c d d′′, d′′ | a′, and

d′′ | b′. But, because gcd(a′, b′) + 1, d′′ would be a unit. Thus d′ | c d,

so gcd(ac, bc) + c · gcd(a, b).

v. gcd(a, gcd(b, c)) + gcd( gcd(a, b), c).

Proof. Let d := gcd(a, b) and e := gcd(b, c). Then gcd(d, c) | d and

gcd(d, c) | c, so gcd(d, c) | a and gcd(d, c) | b and thus

gcd(d, c) | e. Then gcd(d, c) | gcd(a, e). Let d′ be such that d′ | a and

d′ | e. Then d′ | b and d′ | c, so d′ | d and thus d′ | gcd(d, c). Thus

gcd(a, gcd(b, c)) + gcd( gcd(a, b), c).

Definition 2.4. If A is a domain for which there exists at least one greatest

common divisor gcd(a, b) of every pair of elements a, b ∈ A up to associ-

ation by division, we define the greatest common divisor of a finite subset

{a1, . . . , an} ⊂ A of nonzero, nonunital elements inductively. That is, we define the

following association

gcd(a1, . . . , an) + gcd( gcd(a1, . . . , an−1), an).

. Least Common Multiples

Definition 2.5. An element m ∈ A is called a least common multiple of two

elements a, b ∈ A if

i. m is a multiple of a, (a | m)

ii. m is a multiple of b, (b | m) and

iii. any m′ ∈ A such that a | m and b | m is also such that m′ | m.
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(Clarifying) Remark 2.6. If such an element m ∈ A exists for the pair a, b ∈ A,

then it is unique only up to association in divisibility. We use lcm(a, b) to denote

the equivalence class of associates of m. We may also say that m ∈ lcm(a, b).

To denote a representative element of the equivalence class, we use lcm(a, b).

. Greatest Common Divisor Domains

Definition 2.7. If A is a domain for which there exists a greatest common divisor

for any two elements a, b,∈ A, then we call A a greatest common divisor

domain (abbr. GCDD)

Arithmetic Characterization Theorem for Greatest Common

Divisor Domains

Theorem 2.8. Let A be a domain. Then the following are equiva-

lent:

i. For any a, b ∈ A there exists d := gcd(a, b) ∈ A.

ii. For any a, b ∈ A there exists µ := lcm(a, b) ∈ A.

iii. For any a, b ∈ A there exists µ ∈ A such that

Aa ∩ Ab = Aµ.

Claim 2.8.1 (ii. ⇒ iii.). Let a, b ∈ A. If there exists some

µ := lcm(a, b) ∈ lcm(a, b)

then Aa ∩ Ab = Aµ.
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Proof. First, we want to show that Aa∩Ab ⊇ Aµ. By Definition 2.5,

this means a | µ and b | µ which, by Proposition 1.2, implies that

Aµ ⊆ Aa and that Aµ ⊆ Ab. Thus, Aa ∩ Ab ⊇ Aµ.

Now, we want to show that Aa∩Ab ⊆ Aµ. Note that µ ∈ Aa and

µ ∈ Ab which implies that there exist elements α, β ∈ A such that

µ = αa and µ = βb; in other words, it implies that a | µ and

b | µ. Since µ = lcm(a, b), we have µ | m for any m ∈ Aa ∩ Ab.

So, Am ⊆ Aµ and, in particular, m ∈ Aµ. Then we conclude that

Aa ∩ Ab ⊆ Aµ. Thus, Aa ∩ Ab = Aµ.

Claim 2.8.2 (iii. ⇒ ii.). If there exists some µ ∈ A such that Aa∩

Ab = Aµ for all pairs a, b ∈ A then µ := lcm(a, b) ∈ lcm(a, b).

Proof. Let a, b ∈ A. Assume there is an element µ ∈ A such that

Aa ∩ Ab = Aµ for all pairs a, b ∈ A. By basic set theory, this im-

plies that µ ∈ Aa and that µ ∈ Ab. So, a | µ and b | µ, by

Proposition 1.2. (Note that we have shown that µ satisfies Definition

2.5.i. and 2.5.ii.)

Now, take any m ∈ A such that a | m and b | m, that is, take

m ∈ A to be an arbitrary common divisor of both a and b. Then

m ∈ Aa and m ∈ Ab which implies that m ∈ Aa ∩ Ab and, by

assumption, that m ∈ Aµ. So, there is some c ∈ A such that

m = c µ implying that µ | m. (Note that we have shown that µ

satisfies Definition 2.5.iii.) Thus, there is a least common multiple

µ := lcm(a, b) ∈ lcm(a, b) for every pair of elements a, b ∈ A.

Claim 2.8.3 (i. ⇒ ii.). If there exists an element d ∈ A such that

d ∈ gcd(a, b) for all pairs a, b ∈ A then there exists µ ∈ A such
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that µ ∈ lcm(a, b) for all pairs a, b ∈ A.

Proof. In the case where a, b ∈ A are such that ab = 0, we have

lcm(a, b) = 0.

So, assume there is some nonzero element d := gcd(a, b) ∈ A satisfy-

ing Definition 2.1 for an arbitrary pair a, b ∈ A such that ab 6= 0.

Then, by Proposition 2.3, there exist elements a′, b′ ∈ A such that

a = d a′, b = d b′ and gcd(a′, b′) + 1. (∗)

Substituting (1) a = da′ and (2) b = db′ into the product

a b results in

a b = (d a′) b = d (a′ b) = d m (1)

a b = a (b′ d) = (a b′) d = m d, (2)

where m = a′ b = a b′. But then b | m and a | m by Definition

1.1.

Now, let m′ ∈ A be any multiple of both a and b. That is,

assume m′ ∈ A is such that a | m′ and b | m′. So, there exist

α, β ∈ A such that m′ = a α and m′ = b β, which implies

m′ = (d a′) α and m′ = (d b′). Thus, m′ = d a′ α = d b′ β

implying that a′ α = b′ β. This, along with Proposition 2.3, implies

that

b′ gcd(β, α) + gcd(b′ β, b′ α) = gcd(a′ α, b′ α)
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which further implies that

b′ gcd(β, α) + α gcd(a′, b′) + α 1 + α

because gcd(a′, b′) + 1 ( see (∗) ). Now, since b′ gcd(a′, b′) + α,

we get that b′ | α. So, there is some α′ ∈ A which is such that

α = b′ α′. Thus,

m′ = a α = a (b′ α′) = (a b′) α′ = m α′

which, by Definition 1.1, means that m | m′ for any such m′ ∈ A.

We conclude that m ∈ lcm(a, b), as desired.

Claim 2.8.4 (ii. ⇒ i.). If there exists an element µ ∈ A such that

µ ∈ lcm(a, b) for all pairs a, b ∈ A then for all pairs a, b ∈ A

there exists d ∈ A such that d ∈ gcd(a, b).

Proof. Let a, b ∈ A be such that ab = 0. In this case, we have

gcd(a, b) = 0.

So, assume there is some nonzero element m := lcm(a, b) ∈ A satisfy-

ing Definition 2.5 for an arbitrary pair a, b ∈ A such that ab 6= 0.

Then, there exist elements a′, b′ ∈ A such that

m = a a′ = b b′.

Now, since m = lcm(a, b), a | ab and b | ab, there is some

d ∈ A such that

a b = m d = (a a′) d.
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Thus, by left cancellation, b = a′ d, which implies that d | b by

Definition 1.1.

Similarly, since m = lcm(a, b), a | ab and b | ab, the d ∈ A

from above is also such that

a b = m d = (b′ b) d = b′ (b d) = b′ d b.

So, by right cancellation, a = b′ d which implies that d | a by

Definition 1.1. Thus, d is a divisor of both a and b.

Now, let d′ ∈ A be any divisor of both a and b. That is, assume

d′ ∈ A is such that d′ | a and d′ | b. So, there exist α, β ∈ A

such that

a = d′ α and b = d′ β.

Setting m′ := d′ α β, we obtain

m′ = a β = α b.

which implies that

d′ m′ = (d′)2 α β = (d′ α) (d′ β) = a b

and that a, b | m′. Further, since m = lcm(a, b), we know that

m′ | m which implies that there is some γ ∈ A such that m′ = m γ.
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Thus,

a b = d′ m′ = d′ (m γ)

m d = (d′ m) γ

= m d′ γ.

So, d = d′γ implying that d′ | d. Therefore, by Definition 2.1 and

Remark 2.2, d ∈ gcd(a, b), as desired.

Theorem 2.9. If A is a domain satisfying any of the properties in Theorem 2.8,

then

gcd(a, b) lcm(a, b) + a b for any a, b ∈ A.

Proof. If d := gcd(a, b) ∈ A is a greatest common divisor of nozero elements

a, b ∈ A, then there exist elements a′, b′ ∈ A such that a = d a′ and b = d b′

with gcd(a′, b′) + 1. Also, there exist x, y ∈ A with d = a x + b y. . . . . . (1)

Thus, d a′ b = d a b′ = d µ with a′ b = a b′ =: µ ∈ A which implies that

a | µ and b | µ and, in particular, µ d = a b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

Similarly, if m ∈ A is any common multiple of the a, b ∈ A from above,

then there exist elements α, β ∈ A such that m = a α and m = b β. . . . . (3)
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Thus, m d = m (a x + b y) by (1)

= m a x + m b y

= b β a x + a α b y

= a b (β x + α y) by (3)

= µ d (β x + α y) by (2)

=⇒ m = µ(β x + α y).

So, a | µ, b | µ, and µ | m for any common multiple m ∈ A of a, b ∈ A

which implies that µ ∈ lcm(a, b) by Definition 2.5 and Remark 2.6.

Thus, a b = d µ + gcd(a, b) lcm(a, b), as desired.

Remark 2.10. If A is a domain for which there exists at least one greatest common

divisor gcd(a, b) ∈ A (up to association by division) for every pair of elements

a, b ∈ A, then we can express the least common multiple of a finite subset

{a1, . . . , an} ⊂ A of nonzero, nonunital elements in terms of the inductive definition

of greatest common divisor. That is, given Definition 2.4, the following association

holds

lcm(a1, . . . , an) gcd(a1, . . . , an) + a1 · · · an.

A Clarifying Non-Example

Theorem 2.11 ( [Khu03]). There exist domains which are not GCDDs:

for an integer d > 3 such that d + 1 is not prime, and writing
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d+ 1 = pk for some prime p and some integer k > 2, the domain

Z[
√
−d] := {a+ b

√
−d}

has the property that p and 1 +
√
−d have a greatest common

divisor but not a least common multiple. In particular, as a consequence

of Theorem 2.8, Z[
√
−d] is not a GCDD.

. Primes and Irreducibles

Definition 2.12. A nonzero element p ∈ A \ U(A) is called prime if, for any

a, b ∈ A such that p | ab, we have p | a or p | b.

Definition 2.13. A nonzero element q ∈ A \ U(A) is called irreducible if, for

any a, b ∈ A such that q = ab, we have a ∈ U(A) or a + q.

Note the following equivalent definition for an irreducible element.

Definition. A nonzero element q ∈ A \ U(A) is called irreducible if, for any

a, b ∈ A such that q = ab, we have a ∈ U(A) or b ∈ U(A).

Arithmetic Characterization of Primes and Irreducibles

Theorem 2.14. Let A be a domain and p, q ∈ A \ {0}. Then,

the following hold:

i. Prime Element ⇐⇒ Generates Prime Ideal. An element

p ∈ A \ {0} is prime if and only if Ap is a prime ideal;
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Proof
=⇒ . Assume p ∈ A \ U(A) is prime and let a, b ∈ A be

such that ab ∈ Ap. This means that there is some c ∈ A such

that (a b) = c p which implies that p | ab. Thus, p | a or

p | b by Definition 2.12. This means that there exists α ∈ A

such that α p = a or that there exists β ∈ A such that β p =

b. Thus, either a ∈ Ap or b ∈ Ap which implies that Ap

is a prime ideal.

Proof⇐= . Now, assume Ap � A is prime and let a, b ∈ A be

such that p | ab. This means that there is some c ∈ A such

that (a b) = c p which implies that ab ∈ Ap. Thus, a or

b ∈ Ap which implies there exists α ∈ A such that α p = a

or there exists β ∈ A such that β p = b. Thus, either p | a

or p | b which implies that p ∈ A is prime.

ii. Irreducible Element ⇐⇒ Generates Maximal Ideal. An

element q ∈ A\{0} is irreducible if and only if Aq is maximal

among principal ideals;

Proof
=⇒ . Assume q ∈ A \ U(A) is irreducible. We want so show

that, if a principal ideal Aa � A is such that Aa ⊇ Aq then

Aq = Aa. If a ∈ U(A), then Aa = A. So, let a ∈ A \

U(A) be such that Aq ⊆ Aa. This means that any element

q′ ∈ Aq can be written q′ = α′a for some α′ ∈ A and, in

particular, there is some α ∈ A such that α a = q. Since

q ∈ A is irreducible by assumption and since a /∈ U(A), then

a + q. Thus, Aq = Aa, implying that Aq is maximal among

Aa� A.
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Proof⇐= . Assume Aq � A is maximal among all Aa� A and let

a, b ∈ A be such that q = ab. Then, either a ∈ U(A), in

which case q ∈ A is irreducible, or a ∈ A \ U(A), in which

case Aa 6= A. So, consider the latter case. Since a ∈ A is

given to be such that a | q, the above implies Aq ⊆ Aa ( A.

Since Aq was assumed to be maximal, this implies that Aa =

Aq, which further implies that q + a. We have shown that, if

a, b ∈ A are such that q = a b, then either a ∈ U(A) or

a + q. Thus, q is irreducible by Definition 2.13.

iii. Prime Elements are Irreducible in Domains. Any prime

element p of a domain A is also an irreducible element;

Proof. Let a, b ∈ A be nonzero and p ∈ A \U(A) be nonzero

and prime such that p = a b. Thus, p | a b which means that

(1) p | a or (2) p | b by Definition 2.12.

(1) First, assume p | a. Then, there is some α ∈ A such that

a = p α and, thus, p = p 1 = a b = (p α) b which implies

that 1 = α b and that b ∈ U(A).

(2) Similarly, assuming p | b, there is some β ∈ A such that

b = β p and, thus, p = 1 p = a b = a (β p) which implies

that 1 = a β and that a ∈ U(A).

So, any such prime p is also irreducible.

iv. Irreducible Elements are Prime in GCDDS. If A is a

domain in which a greatest common divisor gcd(a, b) ∈ A exists

for any pair of nonzero elements a, b ∈ A \ U(A), then any
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irreducible element q ∈ A is also a prime element. ( See Theorem

2.8 for more on greatest common divisor domains )

Proof. Let A be a domain in which there exists a greatest com-

mon divisor for any pair of nonzero elements. Let a, b ∈ A \ U(A)

be nonzero elements and let q ∈ A be irreducible such that

q | a b.

There exists d := gcd(q, a) ∈ A which is such that d | q. So,

there is some u ∈ A such that q = u d which implies that

(1) d ∈ U(A) or (2) u ∈ U(A).

(1) If d ∈ U(A), then gcd(q, a) + q + 1. Thus,

b gcd(q, a) + gcd(bq, ba) + b.

Now, since q | qb and q | ab, we deduce that q | gcd(qb, ab) +

b which implies that q | b.

(2) If u ∈ U(A), then gcd(q, a) + d + q. Since, gcd(q, a) +

q, then q | a.

Thus, q is prime.

(Clarifying) Remark. Note that the converse of Theorem 2.14.iii. is not necessarily

true for arbitrary domains. This is reflected in Theorem 2.14.iv. by the stricter

hypothesis that A be a GCDD. (see Example 3.9)

(Clarifying) Remark. One may, for example, be tempted to assert that every domain

contains infinitely many prime classes or, equivalently, infinitely many prime elements

which are not associated in divisibility. However, the number of distinct prime classes
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in an arbitrary domain may not be infinite. We will revisit this remark in the context of

unique factorization domains (UFDs), where we prove that a UFD A has infinitely

many prime classes if #U(A) <∞.



24

II. S u r v e y o f S p e c i f i c D o m a i n s

 Survey of Subclasses

. Arithmetic in Square Number Rings

Terminology Apology. I must now caution that my departure from convention in this

section—in particular, the substitution of “square” for the more commonly used

“quadratic”—is fairly drastic and v e r y “ e x t r a ” o f m e . That is, don’t try this,

kids at home!

Now that we have catalogued relevant arithmetic properties of domains, we introduce

the notion of a square number field in order to access a class of arithmetically-relevant

domains: the rings of integers of square number fields. That is, we define a square

number field in order to discuss the associated s q u a r e n u m b e r r i n g . Square

number rings are algebraically-motivated but are arithmetically concrete; one can

explicitly manipulate their elements as symbols to check if they satisfy arithmetic

characterizations of domain subclasses.
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Spoiler Alert. Square number rings are, most importantly, dedekind domains. However,

we will not discuss dedekind domains in depth. Instead, we use arithmetic in square

number rings to illustrate, in concrete examples and counter-examples, a broad charting

of properties as arithmetically-characterized domain subclass inclusions.

Terminology Note. I choose to include the modifier “number” in the terms “square

number field” and “square number ring” to indicate the strict context of a rational

base field and, in so doing, emphasizing the number theoretical significance of this

topic.

Square Number Fields

Definition 3.1. A number field K ⊆ C is a finite extension of

Q. A number field K ⊇ Q is called a square number field if

[K : Q] = 2.

Corollary 3.1.1. If K is a square number field then there is a

uniquely determined, nonzero and squarefree integer d such that

K = Q(
√
d ) := {a+ b

√
d : a, b ∈ Q}.

Proof. Let α ∈ K \Q. Since K is assumed to be a square number

field,

[K : Q] = dimQK = 2

and, since {1, α} is a Q-linearly independent set, we deduce that

{1, α} is a Q-basis for K.

Now, consider m(X) := minαQ(X) ∈ Q[X]. Since [K : Q] = 2,

we know degQ m = 2 and that m(X) = X2 + aX + b
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=
(
X + a

2

)2 − (a2
4
− b
)

.

Note that, if a = 0 then b = 0 implies that m(X) = X2 which

is not irreducible over Q. Thus, if a = 0, then b 6= 0. Note also

that, if b = 0 then m(X) = X2 + aX = X(X − a) which is not

irreducible over Q. So, we eliminate the possibility that a 6= 0 and

b = 0. Note in particular b 6= 0 implies r :=
a2

4
−b is nonzero and

rational. Thus, we can express r =
r1
r2

for r1, r2 6= 0 which

implies r =
r1
r2
· r2
r2

=
1

r22
r1 r2.

Letting δ2 = r1 r2, we express r =

(
δ

r2

)2

. . . . . . . . . . . . . . . ( 1 )

Now, since m(X) is the minimal polynomial of α over Q, we

have

0 = m(α) =
(
α +

a

2

)2
−
(
a2

4
− b

)
=

(
α +

a

2

)2
− r

= x2 − r

= p(x)

where p(X) := X2−r ∈ Q[X] is satisfied by the value x := α +
a

2
.

Thus, by above, p(x) = x2 −
(
δ

r2

)2

.

Recalling Line ( 1 ) from above, we set δ +
√
r1r2 giving

√
r +

1

r2

√
r1r2 + c ·

√
d .



27

Corollary 3.1.2. There are two injective field homomorphisms

id, σ : K ↪→ C

defined by

id :
√
d 7→

√
d and σ :

√
d 7→ −

√
d .

Corollary 3.1.3. The trace map TR
K�Q : K ↪→ Q

is defined by a+ b
√
d 7→ 2a

and the norm map N
K�Q : K ↪→ Q

is defined by a+ b
√
d 7→ a2 − db2.

Remark 3.2. Let d ∈ Z \ {0, 1} be such that d > 0 and d is

squarefree. As a consequence of the preceding discussion, we can define

the following two subclasses of square number fields in terms of d:

i. Real square number fields. have the form Q(
√
d );

ii. Imaginary square number fields. have the form Q(
√
−d).

Definition 3.3. Let A ⊆ B be an extension of domains. An element b ∈ B is

integral over A if there exists a monic polynomial f(X) ∈ A[X] such that

f(b) = 0. The extension A ⊆ B is called integral if every element of B is

integral over A. Define the integral closure of A in B,

A′B := {b ∈ B : b integral over A}.

Then A is integrally closed in B if A′B = A,
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and A is integrally closed if it is integrally closed in its field of fractions.

Definition 3.4. Let K be a number field. We denote the integer elements of

K by OK := Z′K , i.e. the integral closure of Z in K. A domain consisting

of integer elements in a number field is called a number ring and is denoted OK ,

regardless of whether the associated number field K is specified. If K is a square

number field, we will refer to OK as a square number ring (abbr. SNR).

Theorem 3.5. If d ∈ Z \ {0, 1} is the squarefree and uniquely determined integer

guaranteed by Corollary 3.1.1 for a square number field K = Q(
√
d ) then the set

of integer elements of K is given by

OK =


Z
[
1+
√
d

2

]
d ≡ 1 (mod 4)

Z[
√
d ] d 6≡ 1 (mod 4)

where given α ∈ K we define

Z[α] := {a+ bα : a, b ∈ Z} ⊆ K,

and the discriminant of the extension K with respect to the base field Q is

given by

discQ K =


d d ≡ 1 (mod 4)

4 d d 6≡ 1 (mod 4)

Proof. Observe that
√
d ∈ OK because

√
d is a root of the polynomial

X2 − d ∈ Z[X]. Moreover, {1,
√
d } is Z-linearly independent since d ∈ Z \ {0, 1}

is squarefree. Thus, Z[
√
d ] ⊆ OK . If d ≡ 1 (mod 4) then

1 +
√
d

2
∈ OK ,
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since
1 +
√
d

2
is a root of X2 −X +

1− d
4

∈ Z[X].

As above,
1 +
√
d

2
and 1 are Z-linearly independent, so Z

[
1 +
√
d

2

]
⊆ OK .

Now let α ∈ OK . Since {1,
√
d } is a Q-basis for Q(

√
d ), there exist

a, b ∈ Q such that α = a+ b
√
d . Calculating the trace and the norm of α,

we infer that

2a ∈ Z (3)

and that

a2 − db2 ∈ Z. (4)

Moreover, after multiplying (4) by 4, we infer that

(2a)2 − d(2b)2 ∈ Z, (5)

and, upon using (3) and that d is a squarefree integer, we infer further that

2b ∈ Z. (6)

Indeed, to verify (6), suppose that 2b 6∈ Z. Then there exist s, p, t ∈ Z, with

p - s a prime, such that 2b =
s

p t
. Recalling (3) and (5), we deduce that, for some

n ∈ Z, d s2 = p2 t2 n. Since p - s, this implies that p2 | d, which contradicts

the squarefreeness of d. Thus (6) is true. Denoting u := 2a and v := 2b,

observe that we have shown

α ∈ OK =⇒ u, v ∈ Z and u2 − dv2 ≡ 0 (mod 4).

(NB: The converse is also true. The element a + b
√
d ∈ Q(

√
d ) is a root of the
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monic polynomial X2 − uX +
u2 − dv2

4
which is integral if u, v ∈ Z and

u2 − dv2 ≡ 0 (mod 4).

Thus we have the equivalence

α ∈ OK ⇐⇒ u, v ∈ Z and u2 − dv2 ≡ 0 (mod 4).

Now, recall that the square of an integer is either 0 or 1 (mod 4). Thus the

condition u2 − dv2 ≡ 0 (mod 4) holds

if u and v are both even or

if d ≡ 1 and u ≡ v (mod 2).

If d ≡ 2, 3 (mod 4), we infer from this remark that u, v are both even.

Thus α = a + b
√
d =

u

2
+

v

2

√
d ∈ Z[

√
d ].

If d ≡ 1 (mod 4), we infer from the remark that u, v have the same parity.

Thus α = a + b
√
d =

u− v
2

+
v (1 +

√
d )

2
∈ Z

[
1 +
√
d

2

]
.

Proof. To calculate the discriminant, proceed as follows. If d ≡ 2, 3 (mod 4), then

discQ K =

∣∣∣∣∣∣∣∣∣∣
id(1) id(

√
d )

σ(1) σ(
√
d )

∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣
1
√
d

1 −
√
d

∣∣∣∣∣∣∣∣∣∣

2

= 4d.

If d ≡ 1 (mod 4), then

discQ K =

∣∣∣∣∣∣∣∣∣∣
id(1) id

(
1+
√
d

2

)
σ(1) σ

(
1+
√
d

2

)
∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣
1 1+

√
d

2

1 1−
√
d

2

∣∣∣∣∣∣∣∣∣∣

2

= d.
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Units of an Imaginary Square Number Ring

Remark 3.6. Let K = Q(
√
d ) be a square number ring. We will

denote the norm map of K as N(x) := N
K�Q(x).

Lemma 3.7. Let K = Q(
√
d ) be a square number ring. Then

i. N(x · y) = N(x) ·N(y) for all x, y ∈ K;

ii. N(x) ∈ Z for all x ∈ OK (in particular N(x) ∈ N if d < 0); and

iii. x ∈ U(OK) if and only if N(x) = ±1.

i. Proof. Given x = a + b
√
d and y = c + e

√
d ∈ K,

N(x · y) = N((a+ b
√
d) · (c+ e

√
d))

= N((ac+ bde) + (ae+ bc)
√
d)

= (ac+ bde)2 − d(ae+ bc)2

= (a2c2 + 2abcde+ b2d2e2)− d(a2e2 + 2abce+ b2c2)

= (a2c2 + b2d2e2)− d(a2e2 + b2c2)

= (a2 − db2) · (c2 − de2)

= N(x) ·N(y).

ii. Proof. Clear from definition.

iii.
Proof
=⇒ . Suppose that x ∈ U(OK) and let y ∈ U(OK) such that

x · y = 1. Then 1 = N(1) = N(x · y) = N(x) · N(y), so

N(x) = ±1.
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Proof⇐= . Suppose that x = a + b
√
d ∈ OK such that N(x) = ±1

and let y = a− b
√
d . Then

x · y = (a+ b
√
d ) · (a− b

√
d ) = a2 − d b2 = N(x) = ±1,

so x ∈ U(OK).

Theorem 3.8. Let K be an imaginary square field. That is, let K =

Q(
√
d ) for some squarefree d ∈ Z \ {0, 1} with d < 0. Then

U(OK) =



{±1, ±i} d = −1

{±1,±1
2

(
1± i

√
3
)
} d = −3

{−1, 1} d 6= −1, −3.

Proof. Let K = Q(
√
d). By Theorem 3.5, any element of OK will have

the form

i. x = a+ b
√
d if d 6≡ 1 (mod 4); or

ii. x = a+ b
(

1+
√
d

2

)
if d ≡ 1 (mod 4),

for some a, b ∈ Z. Note that we do not consider d ≡ 0 (mod 4), as such

d are not squarefree.

i. Supposing that d ≡ 2, 3 (mod 4) and that d /∈ {−1,−3}, we have

d ≤ −2 which implies −d ≥ 2. Then, since any x ∈ OK will have

the form x = a + b
√
d ∈ Z[

√
d ], and, since any x ∈ U(OK) will

be such that N(x) = 1, we have 1 = N(x) = a2 − db2 ≥ a2 + 2b2

which implies (a, b) = (±1, 0) and, thus, U(OK) = {−1, 1}. Now,

suppose that d = −1. Then any x ∈ U(OK) will have the form
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x = a + bi ∈ U(OK) and will be such that N(x) = 1. Thus,

1 = N(x) = a2 + b2, which implies (a, b) ∈ {(±1, 0), (0,±1)} and,

further, that U(OK) = {±1,±i}.

ii. Supposing that d ≡ 1 (mod 4) such that d 6= −3, we have d ≤ −7

which implies −d ≥ 7. Then, since any x ∈ U(OK) will have the

form

x = a+ b

(
1 +
√
d

2

)
=

(
a+

b

2

)
+
b

2

√
d ∈ Z

[
1 +
√
d

2

]
,

and, since any x ∈ U(OK) will be such that N(x) = 1, we have

1 = N(x) =

(
a+

b

2

)2

− db2

4
which implies

4 = (2a+ b)2 − db2 ≥ (2a+ b)2 + 7b2.

Thus, (a, b) = (±1, 0) and U(OK) = {−1, 1}. Now, suppose that

d = −3. Then any x ∈ U(OK) will have the form

x = a+ b

(
1 +
√
−3

2

)
=

(
a+

b

2

)
+
b

2

√
−3 ∈ Z

[
1 +
√
−3

2

]
,

and will be such that N(x) = 1. Thus, 1 = N(x) =

(
a+

b

2

)2

+

3b2

4
which implies 4 = (2a + b)2 + 3b2 = 4a2 + 4ab + 4b2

and further implies that 1 = a2 + ab + b2. Thus, (a, b) ∈

{(±1, 0), (0,±1), (±1,∓1)} and thus

U(OK) =

{
±1, ±1

2

(
1± i

√
3
)}

.
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Example 3.9. There is a domain for which an irreducible element is not

necessarily prime: Consider the square number field K := Q(
√
−5) and

its ring of integers A := OK = Z
[√
−5
]
. In A, we have the following

two factorizations of 6: 6 = 2 · 3 =
(
1 +
√
−5
) (

1−
√
−5
)
. We will

prove:

Claim 1: The elements 2, 3, 1 +
√
−5 and 1−

√
−5 are irreducible in

A.

Claim 2: The elements 2, 3, 1 + i
√

5 and 1− i
√

5 are not prime in A.

Proof of Claim 1. We will give the proof only for 2 being irreducible.

Let α = a+ b
√
−5 and β = c+ i

√
−5 ∈ A such that 2 = αβ. Applying

N , we deduce that 4 = (a2 + 5b2) (c2 + 5d2) . Thus either a2 + 5b2 = 1

and c2 + 5d2 = 4, or a2 + 5b2 = 2 and c2 + 5d2 = 2, or a2 + 5b2 = 4 and

c2 + 5d2 = 1. Recalling that a, b, c, d ∈ Z, we deduce that only the first

and thirds situations can occur, respectively implying a = ±1, b = 0, c =

±2, d = 0, and a = ±2, b = 0, c = ±1, d = 0. In particular, we obtain

that either α ∈ U(A), or that β ∈ U(A). Thus 2 is indeed irreducible in

A, as desired.

Proof of Claim 2. We will give the proof only for 2 not being prime.

Observe that 2 | 6 =
(
1 +
√
−5
) (

1−
√
−5
)
. So, if 2 |

(
1 +
√
−5
)

or

2 |
(
1−
√

5
)
, then, by applying N , we deduce that 4 | 6, a contradiction.

Consequently, 2 -
(
1±
√
−5
)
, which means that 2 is not a prime in A,

as desired.
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. Unique Factorization Domains

Proposition 3.10 (Prime Irreducible Decomposition). Let A be a domain. If

p1, . . . , pn are prime elements and q1, . . . , qm are irreducible elements of A such

that

p1 · · · pn = q1 · · · qm ,

then m = n and for every 1 ≤ i ≤ n, there is a 1 ≤ j ≤ m such that

pi + qj.

Proof. We proceed by induction on n.

If n = 1 then p1 = q1 · · · qm. So, because p1 is prime, there exists a 1 ≤ j ≤

m such that p1 | qj. Without loss of generality we may assume j = 1. Also

q1 | p1, so p1 + q1 and there exists u ∈ U(A) such that p1 = u · q1. Suppose

that m > 1. Then

u · q1 = p1 = q1q2 · · · qm =⇒ u = q2 · · · qm,

but each qj is irreducible and hence cannot be a unit. Thus m = 1.

Suppose that the result holds for n < N and that

p1 · · · pN = q1 · · · qm.

Then because p1 is prime there exists a 1 ≤ j ≤ m such that p1 | qj, and

without loss of generality we may assume j = 1. There exists u ∈ A such that

q1 = up1, so u ∈ U(A) because q1 is irreducible and p1 cannot be a unit.
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Then p1 + q1 and

u · q1 · · · qm = u · p1p2 · · · pN = q1p2 · · · pN =⇒ p2 · · · pN = u · q2 · · · qm,

so by the inductive hypothesis we have that m − 1 = N − 1 =⇒ m = N and

for every 2 ≤ i ≤ N there is a 2 ≤ j ≤ m such that pi + qj. Thus the result

holds for all n.

Definition 3.11. We call a domain A a unique factorization domain (UFD) if

for every nonzero element a ∈ A \U(A) there exist prime elements p1, . . . , pn ∈ A

such that a = p1 · · · pn.

Definition 3.12. Let A be a domain and let pi ∈ A be prime for all i ∈ I,

where I is an arbitrary indexing set. The subset {pi}i∈I ⊆ A is called a system

of prime representatives in A if

i. for any pair of distinct indexing elements i, j ∈ I, we have pi ��+ pj;

ii. for any prime element p ∈ A, there is an indexing element i ∈ I such that

p + pi.

Remark 3.13. If A is a UFD with a system of prime representatives {pi}i∈I ⊆ A

then for any nonzero element a ∈ A \ U(A) there exist unique indexing subsets

{i1, . . . , in} ⊆ I and {αi1 , . . . , αin} ( N \ {0} such that

a = u · pαi1
i1
· · · pαin

in
for some u ∈ U(A).

Proposition 3.14. If A is a UFD with a system {pi}i∈I ⊆ A of prime repre-

sentatives, then any pair a, b ∈ A of nonzero and nonunital elements with prime
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factorizations

a = u ·
∏
i∈I

pαi
i (where αi = 0 if pi - a),

and b = v ·
∏
i∈I

pβii (where βi = 0 if pi - b),

i. will have a greatest common divisor satisfying gcd(a, b) +
∏
i∈I

p
min{αi,βi}
i , and

ii. will have a least common multiple satisfying lcm(a, b) +
∏
i∈I

p
max{αi,βi}
i .

i. Proof. Let d =
∏
i∈I

p
min{αi,βi}
i . First note that p

min{αi,βi}
i | a and p

min{αi,βi}
i |

b for all i, so d | a and d | b. Let d′ such that d′ | a and d′ | b.

Then d′ has a unique factorization

d′ = w ·
∏
i∈I

pγii

where γi ≤ min{αi, βi} for all i, otherwise d′ could not divide both a

and b. Then d′ | d, so

gcd(a, b) +
∏
i∈I

p
min{αi,βi}
i .

ii. Proof omitted.

Corollary 3.14.1. If A is a UFD, then A is a GCDD. In other words,{ GCDDs } ⊇

{ UFDs }.

Definition 3.15. A domain A is a Bézout domain if, for all ideals (a, b) � A

there exists d ∈ A such that (a, b) = (d). Note that a Bézout domain is not

necessarily a PID, but it is a GCDD with gcd(a, b) = d.
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Definition 3.16. The ring of algebraic integers, denoted by Ω := Z′C, is the

integral closure of Z in C.

Example 3.17. Let A := Ω be the ring of algebraic integers. Because A is a

Bézout domain (see [DF04, Exercise 16.3.24]) it is a GCCD. However, A is not a

UFD because it contains no irreducible elements, as any nonzero a ∈ A \ U(A) can

be factorized a =
√
a ·
√
a.

Arithmetic Characterization Theorem for Unique Factorization Domains

Theorem 3.18. Let A be a domain. Then the following statements are

equivalent:

i. The domain A is a UFD (see Definition 3.11);

ii. every nonzero element of A\U(A) can be written uniquely as a product

of irreducible elements;

iii. a. every nonzero element of A \ U(A) can be written as a product of

irreducible elements;

b. every irreducible element of A is also prime;

iv. a. every nonzero element of A \ U(A) can be written as a product of

irreducible elements;

b. a greatest commmon divisor exists for every pair of elements a, b ∈ A;

v. every nonzero prime ideal P � A contains a prime element;

vi. a. every chain of principal ideals of A stabilizes;

b. for all a, b ∈ A, there exists c ∈ A such that Aa ∩ Ab = Ac.

Claim 3.18.1 ( i. ⇒ ii. ). Assume that A is a UFD. Since all prime

elements are irreducible in domains and since A is a UFD, any nonzero
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a ∈ A \ U(A) will factor into prime and, hence, irreducible elements. Thus,

by Proposition 3.10 and Remark 3.13, any nonzero a ∈ A \ U(A) will factor

uniquely as a product of irreducible elements. �

Claim 3.18.2 ( ii. ⇒ iii. a. ⇒ iii. b. ). We want to show ii. ⇒ iii. b. So,

let q ∈ A be an irreducible and let a, b ∈ A be such that q | a b. Then

there exists c ∈ A such that a b = q c. Applying (ii), we write the unique

irreducible factorizations of a, b, and c as

a =
∏

1≤i≤m
qαi
i , b =

∏
1≤i≤n

qβii ,

and c =
∏

1≤i≤k
q̃γii .

Thus ∏
1≤i≤m

qαi
i ·

∏
1≤i≤n

qβii = q
∏

1≤i≤k
q̃γii .

Recalling that (ii) ensures the uniqueness of the irreducible factorization of

an element of A, we deduce that q ∼ qi for some 1 ≤ i ≤ m or that

q ∼ qi for some 1 ≤ i ≤ n. Thus q | a or q | b, proving that q is a

prime.

Claim 3.18.3 ( iii. ⇒ i. ). Proof is obvious. �

Claim 3.18.4 ( i. ⇒ iv. a. ⇒ iv. b. ). Claim follows from Proposition 3.14.

�

Claim 3.18.5 ( iv. ⇒ i. ). Claim follows from Proposition 2.14. �

Claim 3.18.6 ( i. ⇒ v. ). Let P � A be a nonzero prime ideal and let

a ∈ P be a nonzero element. Since a 6∈ U(A), we know a has a prime
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factorization, say, a =
∏

1≤i≤n
pαi
i . Then, since P is a prime ideal, it follows

that pi ∈ P for some 1 ≤ i ≤ n. �

Claim 3.18.7 ( v. ⇒ i. ). Recalling Theorem 2.8 and part (iv) of Theorem

2.14, it suffices to show that every nonzero a ∈ A \ U(A) can be written as

a product of irreducibles. Suppose that this is not true, i.e. suppose that the

subset

X := {a ∈ A \ (U(A) ∪ {0}) : a is not a product of irreducibles}

is nonempty. Thus there exists a ∈ X. Clearly, a is not irreducible. Thus,

it can be written as a = a1 b1 for some nonzero a1, b1 ∈ A \ U(A). At

least one of a1 or b1 is not in X, for otherwise a is a product of

irreducibles, a contradiction. Say that a1 ∈ X. Reasoning as above, a1 is

not irreducible, and, thus, can be written as a1 = a2b2 for some nonzero

a2, b2 ∈ A \ U(A) with a2 ∈ X.

Continuing in the same way, we obtain two sequences of nonzero elements

(an)n≥1, (bn)n≥1 ⊆ A\U(A) with an = an+1bn+1. Consequently, we obtain a

strictly ascending sequence of principal ideals, Aa1 ( Aa2 ( . . . ( Aan ( . . . ,

a contradiction with (vi1). Thus X = ∅, confirming (i). �

Remark 3.19. Let A be a UFD which is not a field.

i. If |U(A)| <∞, then A has infinitely many non-associated primes.

Proof. 1 Because A is a UFD but not a field, it contains at least one prime element.

Suppose that A contains only finitely many non-associated primes p1, . . . , pn. For

1This proof due to Gregory Taylor.
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any e = (e1, . . . , en) ∈ Nn, define ae := pe11 · · · penn + 1. Note that each ae is

uniquely determined by e because A is a UFD: if ae = ae′ , then e = e′ by

unique factorization. Because |U(A)| <∞, there exists some e such that ae is

not a unit and ei > 0 for all i, so there is a unique factorization

pe11 · · · penn + 1 = ae = u · pf11 · · · pfnn ,

where fj > 0 for some j. But then ej > 0 by assumption, so

1 ≡ ae ≡ 0 (mod pj).

This is a contradiction, so A must have infinitely many non-associated primes.

Note that this proof would fail if |U(A)| =∞.

ii. If |U(A)| =∞, then A may have only finitely many non-associated primes.

Proof. Let p ∈ Z be prime, let S := Z \ (p), and let A := S−1Z. Then A is

a PID (see Theorem 5.1) and has a unique maximal ideal generated by p
1
. All prime

ideals in PIDs are maximal, so p
1

is is the only prime in A up to associates.
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. Principal Ideal Domains

Definition 3.20. A domain A is called a principal ideal domain if, for any

ideal I �A, there exists an element a ∈ A such that I = Aa. In other words,

every ideal in a principal ideal domain can be generated by a single element.

Theorem 3.21. If A is a principal ideal domain, then A is a unique factoriza-

tion domain. In other words, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . { UFDs } ⊇ { PIDs }.

Proof. Since A is a PID, using part (vi) of Theorem 3.18, it suffices to prove that

every ascending sequence of ideals of A terminates. Let I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

be an ascending sequence of ideals and define I :=
⋃
n≥1

In. It is clear that I is

closed under multiplication by elements of A, and for all x, y ∈ I there exists

n ≥ 1 such that x, y ∈ In, so x + y ∈ In ⊆ I. Thus I � A. Further, since

A is a PID, there exists a ∈ A such that I = Aa. In particular, a ∈ I, so

there exists k ≥ 1 such that a ∈ Ik. Then Ik ⊆ I = Aa ⊆ Ik, and so I = Ik.

Consequently, Ik = Ik+1 = Ik+2 = · · · , completing the proof.

Theorem 3.22. If A is a PID and a, b ∈ A, then gcd(a, b) exists and there

exist elements γ, δ ∈ A such that γ a + δb = gcd(a, b).

Proof. Consider the ideal Aa+ Ab� A. Since A is a PID, there exists d ∈ A

such that Aa + Ab = Ad. Observing that d ∈ Ad, we deduce that there exist

λ, µ ∈ A such that λa + µb = d. We claim that d = gcd(a, b). Observing

that Aa ⊆ Aa+ Ab = Ad and that Ab ⊆ Aa+ Ab = Ad, we deduce that d | a

and that d | b. Moreover, letting d′ ∈ A be such that d′ | a and d′ | b, we

see that d′ | λa+ µb, i.e. d′ | d, completing the proof.

Example 3.23. The polynomial ring A := Z[X] is a UFD (see Theorem 4.3), but

it is not a PID because the ideal (2, X) is not principal.
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. Euclidean Domains

Definition 3.24. A domain A is called Euclidean (or a Euclidean domain) if

there exists a function ϕ : A \ {0} −→ N such that, for any a, b ∈ A \ {0} there

exist q, r ∈ A satifysing a = b q + r with i. r = 0 or ii. ϕ(r) < ϕ(b).

Such a function ϕ is called a Euclidean function.

(Clarifying) Remark. A Euclidean function does not need to be a multiplicative

norm! There exists a Euclidean Domain on which a multiplicative norm cannot be

defined. [CNT19, Theorem 1.3]

Proposition 3.25. If A is a Euclidean domain with respect to the Euclidean

function ϕ, then there exists an associated norm ϕ : A \ {0} −→ N such that

for any a, b ∈ A \ {0}

1. there exist q, r ∈ A satifysing a = b q + r with i. r = 0 or ii.

ϕ(r) < ϕ(b); and

2. if a | b, we have ϕ(a) ≤ ϕ(b).

Proof. We define ϕ′(a) := min{ϕ(c) : c + a} and show that such a map satisfies

the above properties. That is, we show ϕ′ = ϕ. Let a, b ∈ A \ {0} and let

u ∈ U(A) such that ϕ(u · b) = ϕ′(b). Then there exists q, r ∈ A such that

u · a = (u · b) q+ r with r = 0 or ϕ(r) < ϕ(u · b) = ϕ′(b). Then a = bq+ u−1 · r

with u−1 · r = 0 or ϕ′(u−1 · r) ≤ ϕ(r) < ϕ(u · b) = ϕ′(b).

(Clarifying) Remark. The q, r ∈ A given in Definition 3.24 and Remark 3.25

(for a domain A which is Euclidean with respect to a norm ϕ) are not necessarily

uniquely determined by a and b.
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Theorem 3.26 ( [Rha62]). If A is a Euclidean domain with respect to a Euclidean

function ϕ and the q, r ∈ A are uniquely determined by a and b, then there

exists a field K such that either A ∼= K or A ∼= K[X].

Proposition 3.27. If A is Euclidean with respect to the norm ϕ (see Remark

3.25) then

i. for all a, b ∈ A \ {0} such that a + b, we have ϕ(a) = ϕ(b);

ii. for all a, b ∈ A \ {0} such that a | b and ϕ(a) = ϕ(b), we have a + b;

iii. for all u ∈ U(A), we have ϕ(u) = ϕ(1).

Theorem 3.28. If A is a Euclidean domain, then A is a principal ideal domain.

In other words, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . { PIDs } ⊇ { EDs }.

Proof. Let A be a Euclidean domain. So, there exists ϕ : A \ {0} −→ N

with the property: for all a, b ∈ A with b 6= 0 there exist q, r ∈ A such

that a = bq + r and r = 0 or ϕ(r) < ϕ(b). Now, let 0 6= I � A and set

I := {ϕ(x) : x ∈ I \ {0}} . Observing that ∅ 6= I ⊆ N, we deduce

there exists x0 ∈ I \ {0} such that ϕ(x0) is the smallest element of I. (7)

We claim that I = Ax0 and proceed by proving double inclusion. First, it is clear

that I ⊇ Ax0 since x0 ∈ I and I�A. Now, we want to show I ⊆ Ax0. So,

let x ∈ I. Since x0 ∈ A \ {0} and since A is Euclidean, there exist q, r ∈ A

such that

x = x0 q + r (8)

and

r = 0 (9)
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or

ϕ(r) < ϕ(x0). (10)

By (8), we know r ∈ I. Further, if (10) held, we would get a contradiction with (7).

Thus (9) must hold instead, implying that x ∈ Ax0 and completing the proof.

Theorem 3.29 ( [AW04, §2.2]). Let K = Q(
√
d) for some squarefree d ∈ Z \

{0, 1} be a square number field. Then OK is a Euclidean domain with respect to

the norm N
K�Q if and only if

d ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}.

Theorem 3.30 ( [Har04]). Let K = Q(
√

14). Then OK is a Euclidean domain,

but not with respect to the norm N
K�Q.

Example 3.31. The domain A := Z
[

1 +
√
−19

2

]
is a PID (see [AW04, Example

12.6.1]). However, A is not a Euclidean domain with respect to any function

(see [AW04, Theorem 2.3.8]).
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III. P r e s e r v e d P r o p e r t i e s

 Polynomial and Power Series Rings Over Domains

. Polynomial Rings Over Domains

Lemma 4.0. If A is a domain, then A[X] is a domain and U(A[X]) = U(A).

Proof. Suppose that there exist

f(X) = anX
n + · · ·+ a1X + a0, g(X) = bmX

m + · · ·+ b1X + b0 ∈ A[X] \ {0}

such that f(X) g(X) = 0. Without loss of generality we may assume a0, b0 6= 0,

otherwise we may factor out the lowest power of X from all terms to obtain

polynomials that satisfy this. Then 0 = f(X) g(X) = cm+nX
m+n + · · ·+ c1X + c0,

where ci =
i∑

j=0

ajbi−j = 0 for all i. But then 0 = c0 = a0b0 6= 0, which is a

contradiction because A is a domain. Thus no such f and g exist, so A[X] is

a domain.

Note that for any f, g ∈ A[X] we have that deg(f · g) = deg(f) + deg(g), so

if f, g ∈ U(A[X]) such that f · g = 1 we have 0 = deg(1) = deg(f) + deg(g),

so deg(f) = deg(g) = 0 and thus f, g ∈ U(A). It is also clear that U(A) ⊆

U(A[X]), so U(A[X]) = U(A).

Theorem 4.1. If K is a field, then K[X] is a Euclidean Domain.
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Proof. Let f(X), g(X) ∈ K[X] such that g(X) 6= 0. We claim that there exist

q(X), r(X) ∈ K[X] such that f(X) = q(X) g(X) + r(X) . . . . . . . . . . . . . . . . . . . (∗)

with r(X) = 0 or deg r(X) < deg g(X). If f(X) = 0, we can choose q(X) =

r(X) = 0. So, suppose f(X) ∈ K[X] is such that f(X) 6= 0. In particular,

assume f(X) ∈ K[X] is such that n := deg f(X) > 0.

If n = 0 then deg f(X) = 0 implies f ∈ K. Thus, there exist q, r ∈ K

such that f = q · g(X) + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (∗∗)

In particular, there exist r := f and q := 0 for which (∗∗) holds. Further, if

m := deg g(X) > n, there exist q(X) := 0 and r(X) := f(X) which satisfy

(∗). So, without loss of generality, take f(X), g(X) ∈ K[X] to be such that

deg f(X) := n > m := deg g(X).

Then, for appropriate a0, . . . , an, b0, . . . , bn ∈ K (with an, bm 6= 0) we can

express

f(X) := an ·Xn + · · ·+ a1 ·X + a0 ∈ K[X]

and

g(X) := bm ·Xm + · · ·+ b1 ·X + b0 ∈ K[X]

to define

h(X) := f(X) − an
bm
·Xn−m g(X).

Since deg h < n, there exist p(X), r(X) ∈ K[X] such that h(X) = p(X)g(X) +

r(X) with r(X) = 0 or deg r(X) < deg g(X), assuming a strong induction hy-

pothesis, that is, assuming our claim holds for every h(X) ∈ K[X] such that

deg h(X) < deg f(X).

Thus, there exists q(X) ∈ K[X] such that q(X) = p(X) +
an
bm

Xn−m and there
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exists r(X) ∈ K[X] satisfying (∗) for all such f(X), g(X) ∈ K[X].

Corollary 4.1.1. By Theorem 3.28, since, for any field K, the polynomial ring

A := K[X] is a Euclidean Domain, then A is also a principal ideal domain.

Lemma 4.2.0 (Gauss, [DF04, Proposition 9.5]). If A is a UFD with field of

fractions K = Frac(A) and f(X) ∈ A[X] is irreducible in A[X], then it is

also irreducible in K[X].

Corollary 4.2.2. If A is a UFD with field of fractions K = Frac(A) and

f(X) ∈ A[X] is a polynomial such that the greatest common divisor of its co-

efficients is 1, then f(X) is irreducible in A[X] if and only if it is irreducible in

F [X].

Proof. Suppose that f(X) = g(X)h(X) is reducible in A[X]. Then by the con-

dition on the coefficients of f(X) neither g(X) nor h(X) are constant, so

f(X) = g(X)h(X) is also reducible in K[X].

Theorem 4.3. If A is a UFD, then A[X] is a UFD.

Proof. Let f(X) ∈ A[X] \ {0}, and without loss of generality we may assume that

the greatest common divisor of its coefficients is 1. Because K[X] is a Euclidean

domain (and hence a UFD) there exists a factorization over K[X] into irreducibles.

By Gauss’s lemma we obtain a factorization in A[X]. The greatest common divisor

of the coefficients of each of these factors is also 1, so by the previous lemma these

factors are also irreducible in A[X]. Thus there exists a factorization of f(X) in

A[X] into irreducibles, and uniqueness follows from the uniqueness of factorization

in K[X].

Corollary 4.4. If A is a Euclidean domain or PID, then A[X] is a UFD.
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. Rings of Formal Power Series

Lemma 4.5. If A is a domain, then A[[X]] is a domain and

U(A[[X]]) =

{∑
i>0

aiX
i ∈ A[[X]] : a0 ∈ U(A)

}
.

Proof. Suppose that

f(X) =
∑
i>0

aiX
i, g(X) =

∑
i>0

biX
i ∈ A[[X]]

such that f(X) g(X) = 0.

Without loss of generality we may assume that a0, b0 6= 0, otherwise we may fac-

tor out the lowest power of X from all terms to obtain series that satisfy this.

But then 0 = f(X) g(X) =
∑
i>0

ciX
i where ci =

i∑
j=0

ajbi−j = 0 for all i, so

0 = c0 = a0b0 6= 0, which is a contradiction because A is a domain. Thus A[[X]]

is a domain.

Suppose that f(X) =
∑
i>0

aiX
i ∈ U(A[[X]]) and let g(X) =

∑
i>0

biX
i ∈ U(A[[X]])

such that f(X) g(X) = 1. Then 1 = f(X) g(X) =
∑
i>0

ciX
i where c0 = a0b0 =

1 and ci =
i∑

j=0

ajbi−j = 0 for all i > 1, so a0 ∈ U(A).

Conversely, suppose that f(X) =
∑
i>0

aiX
i ∈ A[[X]] with a0 ∈ U(A). Let g(X) =∑

i>0
biX

i ∈ A[[X]] with

b0 :=
1

a0
and, for all i > 0, bi := − 1

a0

i∑
j=1

ajbi−j.



50

Then one may verify that f(X) g(X) = 1, so f(X) ∈ U(A[[X]]). Thus

U(A[[X]]) =

{∑
i>0

aiX
i ∈ A[[X]] : a0 ∈ U(A)

}
.

Theorem 4.6. If K is a field, then K[[X]] is a Euclidean domain.

Proof. By Lemma 4.5, any f(X) ∈ K[[X]] \ {0} may be written as f(X) =

Xnf̃(X) for some uniquely determined n ∈ N and f̃(X) ∈ U(K[[X]]), so

define

ϕ : K[[X]] \ {0} −→ N by ϕ(f) := n.

Let f(X), g(X) ∈ K[[X]] such that g(X) 6= 0. We claim that there exist

q(X), r(X) ∈ K[[X]] such that f(X) = q(X)g(X) + r(X) with r(X) = 0 or

ϕ(r) < ϕ(g).

If ϕ(f) < ϕ(g) , we can choose q(X) = 0 and r(X) = f(X). Otherwise, sup-

pose ϕ(f) ≥ ϕ(g) and let n = ϕ(f),m = ϕ(g). Then there exist f̃(X), g̃(X) ∈

U(K[[X]]) such that f(X) = Xnf̃(X), g(X) = Xmg̃(X), and thus we can

choose q(X) = Xn−mf̃(X)g̃(X)−1 and r(X) = 0. Thus K[[X]] is a Euclidean

domain.

Theorem 4.7. If A is a PID, then A[[X]] is a UFD.

Proof. We will show that for any non-zero prime ideal P � A[[X]], there exists a

prime element p ∈ A such that p ∈ P . We’ll do this with the help of the function

ϕ : A[[X]] −→ A,∑
i≥0

aiX
i 7→ a0,
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which is a surjective ring homomorphism. Fix an arbitrary non-zero prime ideal

P � A[[X]]. If X ∈ P , then we may take p := X. If X 6∈ P , consider

the ideal P ∗ := ϕ(P ) � A. Since A is a PID, there exists a ∈ A such that

P ∗ = A a. Thus there exists f ∈ P such that a = ϕ(f). In particular, f

satisfies f(X) = a+ a1X + . . . .

Claim 4.7.1. P = fA[[X]].

Proof. We prove double inclusion.

First, it is clear that P ⊇ fA[[X]] because f(X) ∈ P .

Now, we want to show P ⊆ fA[[X]]. So, let g(X) := b0 + b1X + . . . ∈ P .

Then b0 = ϕ(g) ∈ P ∗ = Aa, which implies that there exists α0 ∈ A such that

b0 = α0 a. In turn, this implies that

g(X) − α0f(X) = Xg1(X) (11)

for some g1 ∈ A[[X]]. But g(X) − α0f(X) ∈ P , a prime ideal which satisfies

X 6∈ P . Thus

g1 ∈ P.

We deduce that there exists α1 ∈ A such that

g1(X)− α1f(X) = Xg2(X) (12)

for some g2 ∈ A[[X]]. Putting together (11) and (12), we deduce that

g(X) = (α0 + α1X)f(X) +X2g2(X).
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Proceeding similarly for g2 ∈ P , we find α3 ∈ A and g3 ∈ A[[X]] such that

g(X) =
(
α0 + α1X + α2X

2
)
f(X) +X3g3(X).

Continuing, we find α4, α5, . . . ∈ A such that

h(X) := α0 + α1X + α2X
2 + . . . ∈ A[[X]]

satisfies

g(X) = h(X)f(X).

Thus

g ∈ A[[X]]f.

Since P is a principal prime ideal of A[[X]], its generator f must be a prime

element of A[[X]] and also of P . This completes the proof.

Remark 4.8. If A is a UFD, then A[[X]] is not necessarily a UFD. For example,

in the paper “On unique factorization domains,” Pierre Samuel shows that A :=

K[a, b, c], with K a perfect field of characteristic 2 and with a3 + b7 = c2, is a

UFD, but A[[X]] is not (see page 14, second paragraph; this example arises from

Samuel’s Theorem 4.1 on page 9 and Theorem 4.3 on page 11).

Corollary 4.9. If K is a field, then K[[X, Y ]] is a UFD.

Proof. Because K[[X]] is a Euclidean domain it is a PID, so K[[X, Y ]] = K[[X]][[Y ]]

is a UFD.
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 Localizations of Domains

. An Arithmetic Characterization of Domain Localizations

Theorem 5.1 (Localization Preserves PID Structure). If A is a PID and S ⊆ A

is a multiplicatively closed system, then S−1A is a PID.

Proof. Let I =

(
a1
s1
,
a2
s2
, . . .

)
� S−1A be an ideal. Because

1

s1
,

1

s2
, . . . ∈

U(S−1A) we have I =
(a1

1
,
a2
1
, . . .

)
. Because A is a PID there exists d ∈ A

such that (d) = (a1, a2, . . .) and, in particular, d | ai for all i. Thus, I =(
d

1

)
is principal, so S−1A is a PID.

Theorem 5.2 (Localization Preserves UFD Structure). If A is a UFD and S ⊆ A

is a multiplicatively closed subset, then S−1A is a UFD.

Proof. Suppose that q ∈ A is irreducible. If there exists s ∈ S such that q | s,

then there exists a ∈ A such that s = q a, so
q

1
· a
s

=
q a

s
= 1, and, hence,

q

1
is a unit.

Now suppose that q does not divide any element of S, and suppose that

q

1
=
a

s
· b
t
. Then a b = q s t, so q | ab and hence q | a or q | b because q ∈ A

is prime. Without loss of generality assume a = q c. Then
q

1
=
qc

s
· b
t

=
q

1
· bc
st
,

so
bc

st
= 1 which implies

b

t
∈ U(A) is a unit and, hence,

q

1
is irreducible.

Suppose that
a

s
∈ S−1A is irreducible. If a is irreducible in A it is clear

that
a

s
is associate to

a

1
, so suppose that a is not irreducible in A. If every

irreducible dividing a in A also divides an element of S, then
a

s
would be

a unit and could not be irreducible, so there must exist an irreducible q ∈ A such

that a = q b and such that q does not divide any element of S. Then
a

s
=
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q

1
· b
s
, so

b

s
is a unit by the irreducibility of

a

s
and

q

1
. Thus, any irreducible

a

s
∈ S−1A is associate to

q

1
for some irreducible q ∈ A.

Now let
a

s
∈ S−1A \ {0}. There exists a unique factorization

a = u · pe11 · · · pemm qf11 · · · qfnn ∈ A,

where p1, . . . , pm are the prime factors of a which divide elements of S and

q1, . . . , qn are the factors of a which do not divide an element of S. Then, there

is a factorization into irreducibles

a

s
=
u · pe11 · · · pemm

s
·
(q1

1

)f1
· · ·
(qn

1

)fn
.

Because all irreducibles of S−1A are associate to some
q

1
, this factorization is

unique by the uniqueness of factorization in A.

Theorem 5.3. Let A be a domain such that every ascending chain of principal

ideals of A stabilizes. Let (pi)i∈I be a set of prime elements of A and denote

by S the multiplicatively closed system generated by this set. If S−1A is a UFD,

then A is a UFD.

Proof. Observe that it is enough to prove the statement for S such that 0 6∈ S.

Otherwise, S−1A = {0} and there is nothing to prove. So, let p ∈ A be a prime

element which does divide any element of S. We want to show that
p

1
is prime

in S−1A. Clearly,
p

1
6= 0

1
. Moreover, since p does not divide any element of

S, we have
p

1
6∈ U

(
S−1A

)
.

Let a, b ∈ A and s, t ∈ S be such that
p

1

∣∣∣ a
s
· b
t

in S−1A. Then there exists

c

r
∈ S−1A such that

a

s
· b
t

=
p

1
· c
r
. In other words, there exist u, v ∈ S such

that u a b = p c v. This gives p | u ·a b in A, and since p is a prime in A,
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we get p | u, or p | a, or p | b. Recall that p does not divide any element

of S. Thus p | a or p | b. This, in turn, implies that
p

1

∣∣∣ a
s

or
p

1

∣∣∣ b
s

in

S−1A, which implies that
p

1
is prime in S−1A, as desired.

Now, let
a

s
∈ (S−1A) \ U

(
S−1A

)
such that

a

s
6= 0

1
. Since A is a UFD, any

element a ∈ A can be written as a product of primes of A, say, a = p1 . . . pn.

Upon reindexing the prime factors in the decomposition of a, assume that pj

for 1 6 j 6 r do not divide any element of S, while pk for (r + 1) 6 k 6 n

divide some element of S. That is, assume that there exist sr+1, . . . , sn ∈ S and

ar+1, . . . , an ∈ A \ {0} such that pr+1ar+1 = sr+1, . . . , sn = pnan. Then

a

s
=
p1
1
· . . . · pr

1
· pr+1

1
. . .

pn
1

=
p1
1
· . . . · pr

1
· sr+1

ar+1

. . .
sn
an
.

Observe that u :=
sr+1

ar+1

. . .
sn
an
∈ U(S−1A) and that, by above,

p1
1
, . . . ,

pr
1

are

prime in S−1A.
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