
Lecture 6

We are now ready to prove the triangle removal lemma.

Theorem 1 (Triangle removal lemma) For every ε > 0 there exists δ > 0 such that, for any graph
G on n vertices with at most δn3 triangles, it may be made triangle-free by removing at most εn2 edges.

Proof Let X1 ∪ · · · ∪XM be an ε
4 -regular partition of the vertices of G. We remove an edge xy from

G if

1. (x, y) ∈ Xi ×Xj , where (Xi, Xj) is not an ε
4 -regular pair;

2. (x, y) ∈ Xi ×Xj , where d(Xi, Xj) < ε
2 ;

3. x ∈ Xi, where |Xi| ≤ ε
4M n.

The number of edges removed by condition 1 is at most
∑

(i,j)∈I |Xi||Xj | ≤ ε
4n

2. The number removed
by condition 2 is clearly at most ε

2n
2. Finally, the number removed by condition 3 is at most Mn ε

4M n =
ε
4n

2. Overall, we have removed at most εn2 edges.

Now, suppose that some triangle remains in the graph, say xyz, where x ∈ Xi, y ∈ Xj and z ∈ Xk.
Then the pairs (Xi, Xj), (Xj , Xk) and (Xk, Xi) are all ε

4 -regular with density at least ε
2 . Therefore,

since |Xi|, |Xj |, |Xk| ≥ ε
4M n, we have, by the counting lemma that the number of triangles is at least(

1− ε

2

)( ε
4

)3 ( ε

4M

)3
n3.

Taking δ = ε6

220M3 yields a contradiction. 2

We now use this removal lemma to prove Roth’s theorem. We will actually prove the following stronger
theorem.

Theorem 2 Let δ > 0. Then there exists n0 such that, for n ≥ n0, any subset A of [n]2 with at least
δn2 elements must contain a triple of the form (x, y), (x+ d, y), (x, y + d) with d > 0.

Proof The set A + A = {x + y : x, y ∈ A} is contained in [2n]2. There must, therefore, be some z
which is represented as x+ y in at least

(δn2)2

(2n)2
=
δ2n2

4

different ways. Pick such a z and let A′ = A∩ (z−A) and δ′ = δ2

4 . Then |A′| ≥ δ′n2 and if A′ contains
a triple of the form (x, y), (x+ d, y), (x, y+ d) for d < 0, then so does z−A. Therefore, A will contain
such a triple with d > 0. We may therefore forget about the constraint that d > 0 and simply try to
find some non-trivial triple with d 6= 0.

Consider the tripartite graph on vertex sets X, Y and Z, where X = Y = [n] and Z = [2n]. X will
correspond to vertical lines through A, Y to horizontal lines and Z to diagonal lines with constant
values of x+ y. We form a graph G by joining x ∈ X to y ∈ Y if and only if (x, y) ∈ A. We also join
x and z if (x, z − x) ∈ A and y and z if (z − y, y) ∈ A.
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If there is a triangle xyz in G, then (x, y), (x, y+(z−x−y)), (x+(z−x−y), y) will all be in A and thus
we will have the required triple unless z = x + y. This means that there are at most n2 = 1

64n(4n)3

triangles in G. By the triangle removal lemma, for n sufficiently large, one may remove δ
2n

2 edges and
make the graph triangle-free. But every point in A determines a degenerate triangle. Hence, there are
at least δn2 degenerate triangles, all of which are edge disjoint. We cannot, therefore, remove them
all by removing δ

2n
2 edges. This contradiction implies the required result. 2

This implies Roth’s theorem as follows.

Theorem 3 (Roth) For all δ > 0 there exists n0 such that, for n ≥ n0, any subset A of [n] with at
least δn elements contains an arithmetic progression of length 3.

Proof Let B ⊂ [2n]2 be {(x, y) : x − y ∈ A}. Then |B| ≥ δn2 = δ
4(2n)2 so we have (x, y), (x + d, y)

and (x, y + d) in B. This translates back to tell us that x − y − d, x − y and x − y + d are in A, as
required. 2

To prove Szemerédi’s theorem by the same method, one must first generalise the regularity lemma
to hypergraphs. This was done by Gowers and, independently, by Nagle, Rödl, Schacht and Skokan.
This method also allows you to prove the following more general theorem.

Theorem 4 (Multidimensional Szemerédi) For any natural number d, any δ > 0 and any subset
P of Zd, there exists an n0 such that, for any n ≥ n0, every subset of [n]d of density at least δ contains
a homothetic copy of P , that is, a set of the form k.P + `, where k ∈ Z and ` ∈ Zd.

The theorem proved above corresponds to the case where d = 2 and P = {(0, 0), (1, 0), (0, 1)}. Sze-
merédi’s theorem for length k progressions is the case where d = 1 and P = {0, 1, 2, . . . , k − 1}.
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