Final Exam, Math 310, Fall 2016

Problem 1. Find an invertible matrix P and a matrix C of the form $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ such that $\left(\begin{array}{cc}5 & -5 \\ 1 & 1\end{array}\right)=P C P^{-1}$. Also find P^{-1}.

Solution. We get the characteristic equation $(5-\lambda)(1-\lambda)+5=0$. We get $\lambda=3 \pm i$. Set $\lambda=3-i$. Then $C=\left(\begin{array}{cc}3 & -1 \\ 1 & 3\end{array}\right)$. To find the corresponding eigenvectors, we solve the augmented matrix

$$
\left(\begin{array}{ccc}
2+i & -5 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence we have $x_{2}=$ free, and $x_{1}=5 x_{2} /(2+i)=x_{2}(2-i)$. Therefore, we have the eigenvector $v=\binom{2}{1}+i\binom{-1}{0}$. This implies

$$
P=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right), \text { and } P^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)
$$

Problem 2. Let $W=\operatorname{Span}\left\{\left(\begin{array}{l}0 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}5 \\ 6 \\ 7\end{array}\right)\right\}$. Find the closest vector in W to $b=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. What is the distance between b and W ?

Solution. Applying Gram-Schmidt, we have $u_{1}=\left(\begin{array}{l}0 \\ 4 \\ 2\end{array}\right)$ and $u_{2}=\left(\begin{array}{c}5 \\ -8 / 5 \\ 16 / 5\end{array}\right)$. Closest vector is $v=\frac{u_{1} \cdot b}{u_{1} \cdot u_{1}} u_{1}+\frac{u_{2} \cdot b}{u_{2} \cdot u_{2}} u_{2}$.
Problem 3. Find the inverse, if it exists, of the matrix $\left(\begin{array}{ccc}1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4\end{array}\right)$
Solution. After performing Gaussian elimination, the matrix is not invertible.
Problem 4. Let W be the set of polynomials of degree at most 2 , such that $p(17)=0$. Prove or disprove that W is a subspace.

Solution. Yes, W is a vector space. 1) The zero polynomial satsifies $p(17)=0$. Also, if p, q in W, then $p(17)+q(17)=0$. Finally, if p is in W, then $\alpha p(17)=0$.
Problem 5. Find the least squares solution of $A=\left(\begin{array}{cc}1 & 3 \\ 1 & -1 \\ 1 & 1\end{array}\right), x=\left(\begin{array}{l}5 \\ 1 \\ 0\end{array}\right)$.
Solution. By normalizing, we get the augmented matrix $\left(\begin{array}{ccc}3 & 3 & 6 \\ 3 & 11 & 14\end{array}\right)$. Our solution set is $x_{1}=1$ and $x_{2}=1$.
Problem 6. Compute A^{100}, where $A=\left(\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right)$.

Solution. We get the characteristic equation $(7-\lambda)(1-\lambda)+8=0$. This gives $\lambda_{1}=3$ and $\lambda_{2}=5$. For finding the eigenvector v_{1} corresponding to λ_{1}, we find nontrivial solutions to the augmented matrix $\left(\begin{array}{ccc}4 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)$. We have $x_{2}=$ free and $x_{1}=-x_{2} / 2$. This gives $v_{1}=\binom{-1 / 2}{1}$.

For the other eigenvector v_{2}, we find nontrivial solutions to the augmented matrix $\left(\begin{array}{lll}2 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)$. This gives $x_{2}=$ free and $x_{1}=-x_{2}$. Hence $v_{2}=\binom{-1}{1}$. Therefore

$$
A=\left(\begin{array}{cc}
-1 / 2 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
-2 & -1
\end{array}\right)
$$

This implies

$$
A^{100}=\left(\begin{array}{cc}
-1 / 2 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
3^{100} & 0 \\
0 & 5^{100}
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
-2 & -1
\end{array}\right)
$$

Problem 7. Over polynomials of degree at most 1, find the change-of-coordinate matrix from the basis $\mathcal{B}=\{1-2 t, 3-5 t\}$ to $\mathcal{C}=\{4,2+t\}$. Find the \mathcal{B}-coordinates of $1+t$

Solution. Converting the polynomials into vectors, gives $B=\left\{\binom{1}{-2},\binom{3}{-5}\right\}$, and $C=\left\{\binom{4}{0},\binom{2}{1}\right\}$. Thus the change-of-coordinate matrix is $\left(\begin{array}{cc}5 / 4 & 13 / 4 \\ -2 & -5\end{array}\right)$. For the second part, we need to solve the augmented matrix

$$
\left(\begin{array}{ccc}
1 & 3 & 1 \\
-2 & -5 & 1
\end{array}\right)
$$

This gives $x_{1}=-8$ and $x_{2}=3$. Thus the B coordinate of $1+t$ is $(-8,3)$.
Problem 8. Suppose $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=9 . \quad$ Compute $\left|\begin{array}{ccc}2 a-g & 2 b-h & 2 c-i \\ d+3 g & e+3 h & f+3 i \\ 4 g+a+d & 4 h+b+e & 4 i+c+f\end{array}\right|$. Justify your answer.

Solution.

$$
\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 1 & 3 \\
1 & 1 & 4
\end{array}\right)\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{ccc}
2 a-g & 2 b-h & 2 c-i \\
d+3 g & e+3 h & f+3 i \\
4 g+a+d & 4 h+b+e & 4 i+c+f
\end{array}\right) .
$$

Hence the determinant is $3 \cdot 9=27$
Problem 9. Let $c=\left(\begin{array}{c}4 / 3 \\ -1 \\ 2 / 3\end{array}\right)$ and $d=\left(\begin{array}{c}5 \\ 6 \\ -1\end{array}\right)$. Find the unit vector u in the direction of c. Then show that d is orthogonal to c.

Solution. $u=c /\|c\|=\sqrt{9 / 29}\left(\begin{array}{c}4 / 3 \\ -1 \\ 2 / 3\end{array}\right) \cdot d \cdot c=0$.

