Lecture 1

1 Point-line incidences

Let P be a set of m (distinct) points and L be a set of n (distinct) lines in the plane. An incidence is a pair $(p, \ell) \in P \times L$ such that $p \in \ell$. Denote $I(P, L) = \{(p, \ell) \in P \times L : p \in \ell\}$ and denote I(m, n) to be the maximum |I(P, L)| over all choices of an m-element point set P and an n-element set of lines L.

Trivial upper bound, $I(m, n) \leq mn$.

Theorem 1.1 (Kővári-Sós-Turán, 1954). If G = (U, V, E) is a bipartite graphs with parts of size m and n, (|U| = m and |V| = N) not containing $K_{r,r}$ as a subgraph, then

$$|E(G)| \le O(\min(mn^{1-1/r} + n, m^{1-1/r}n + m))$$

Proof.

$$m\binom{|E(G)|}{m}{r} = m\binom{\sum_{u} d(u)}{m} \leq \sum_{u \in U} \binom{d(u)}{r} = [\text{copies of } K_{1,r}] \leq \binom{n}{r} (r-1)$$

since $\frac{(n-r)^r}{r!} \leq {n \choose r} \leq \frac{n^r}{r!}$, we have

$$m\frac{\left(\frac{|E(G)|}{m}-r\right)^r}{r!} \le \frac{n^r}{r!}r$$

which implies

$$|E(G)| \le r^{1/r} n m^{1-1/r} + r m$$

The other bound, $|E(G)| \leq O(mn^{1-1/r} + n)$, follows from double counting $\sharp K_{r,1}$ -s.

No two distinct points lie on two distinct lines $(K_{2,2}$ -free), implies

$$I(n,n) \stackrel{KST}{\leq} O(n^{3/2}).$$

Theorem 1.2 (Szemerédi-Trotter, 1983). For all $m, n \ge 1$

$$I(m,n) = O(m^{2/3}n^{2/3} + m + n)$$

and this bound is tight.

Corollary 1.3 (Szemerédi-Trotter, 1983). Given a set of m points P in the plane, and set of n k-rich lines L_k (i.e. each line in L_k contains at least k points from P), then

$$n = |L_k| \le O\left(\frac{m^2}{k^3} + \frac{m}{k}\right)$$

Proof.

$$kn \le |I(P, L_k)| \stackrel{ST}{\le} O(n^{2/3}m^{2/3} + m + n).$$

References

- M. Ajtai, V. Chvátal, M. Newborn, E. Szemerédi, Crossing-free subgraphs, Theory and Practice of Combinatorics. North-Holland *Mathematics Studies* 60 (1982), 9–12.
- [2] G. Elekes, On the number of sums and products, Acta Arithmetica, 4 (1997), 365-367.
- [3] T. Kővári, V. Sós, P. Turán, P. (1954), On a problem of K. Zarankiewicz, Colloquium Math. 3, 50–57.
- [4] T. Leighton, Complexity Issues in VLSI. Foundations of Computing Series (1983). Cambridge, MA, MIT Press.
- [5] L. Székely, Crossing numbers and hard Erdos problems in discrete geometry, Combinatorics, Probability and Computing 6 (1997), 353–358.
- [6] E. Szemerédi, W. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983), 381–392.