
Lecture 2

1 Point-line incidences

Let P be a set of m (distinct) points and L be a set of n (distinct) lines in the plane. An incidence
is a pair (p, ℓ) ∈ P × L such that p ∈ ℓ. Denote I(P,L) = {(p, ℓ) ∈ P × L : p ∈ ℓ} and denote
I(m,n) to be the maximum |I(P,L)| over all choices of an m-element point set P and an n-element
set of lines L.

1.1 Upper bound proof of Székely, 1997

A drawing of a graph G is a mapping that assigns vertices to points, and edges to continuous arcs
connecting the corresponding vertices. The interior of each arc (edge) does not contain any vertices.
A pair of arcs (edges) cross if their interiors have a point in common. The crossing number of a
graph G, denoted by cr(G), is the minimum number of pairs of arcs (edges) that cross over all
drawings of G.

A graph G is planar if and only if it has a drawing with no crossings.

Theorem 1.1 (Euler, 1750’s). Let G = (V,E) be a connected planar graph drawn in the plan with
|F | faces. Then

|V | − |E|+ |F | = 2.

Note that G may contain multiple edges and loops.

Proof. Induction on |V |. Base case |V | = 1 is trivial. For |V | > 2, let e = uv be an edge connecting
two distinct vertices. By contracting e, we reduce the number of vertices and edges by one and the
proof is complete by the induction hypothesis.

Corollary 1.2. If G is a simple (no loops or multiple edges) planar graph with n vertices, then
|E(G)| ≤ 3n− 6.

Proof. Let F be the set of faces in a planar drawing of G. Then

3|F | ≤
∑

f∈F

|f | = 2|E|,

which implies |F | ≤ 2|E|/3. Plugging this into Euler’s formula gives

2 ≤ |V | − |E|+ (2|E|/3),
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which implies |E| ≤ 3|V | − 6.

Corollary 1.3. For any simple graph G = (V,E), cr(G) ≥ |E| − 3|V |.

Proof. If |E| > 3|V |, and some drawing of G had fewer than |E| − 3|V | crossings, then we can
delete one edge from each crossing and obtain a planar graph with more than 3|V | edges. This
contradiction completes the proof.

Theorem 1.4 (Crossing Lemma, Ajtai-Chvá tal-Newborn-Szemerédi 1982, Leighton 1983). Let G
be a simple graph. Then

cr(G) ≥
1

64

|E|3

|V |2
− |V |.

Proof. (Folklore) Consider any drawing of G = (V,E) in the plane, with n vertices, m edges, and x
crossings (pairs of edges that cross). We can assume that m ≥ 4n, otherwise the statement is trivial.
Choose a random subset V ′ ⊂ V by picking each vertex v ∈ V independently with probability p.
Let G′ = (V ′, E′) be the subgraph induced on V ′ with n′ vertices, m′ edges, and x′ crossings in the
inherited (same) drawing. Then E[n′] = np, E[m′] = mp2, and E[x′] = xp4. By Lemma 1.3 and
linearity of expectation, we have

E[x′] ≥ E[m′]− 3E[n′],

which implies

xp4 ≥ mp2 − 3np.

By setting p = 4n/m (recall m ≥ 4n), we have

x ≥
1

64

m3

n2
.

Proof of the Szemerédi-Trotter theorem. Consider a set P of m points and a set L of n lines
in the plane maximizing I(m,n). We define a drawing of a graph G where the vertices of G are the
points from P , and two points p, q (vertices) are connected iff p and q lie on a common line ℓ ∈ L
next to each other. Since a line with k points defines k− 1 edges, our graph G contains I(m,n)−n
edges.

We have cr(G) ≤
(n
2

)

≤ n2, since two lines cross at most once. On the other hand, by the
Crossing Lemma, we have

cr(G) ≥
1

64

|E|3

m2
−m =

1

64

(I(m,n)− n)3

m2
−m.

which implies I(m,n) ≤ O(m2/3n2/3 +m+ n).

Theorem 1.5 (Székely 1997). Let P be a set of m points and L be a set of n pseudo lines in
the plane, that is, a family of curves in which every two members in L have at most one point in
common. Then I(P,L) ≤ O(m2/3n2/3 +m+ n).
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