Lecture 2

1 Point-line incidences

Let P be a set of m (distinct) points and L be a set of n (distinct) lines in the plane. An incidence
is a pair (p,f) € P x L such that p € £. Denote I(P,L) = {(p,{) € P x L : p € ¢} and denote
I(m,n) to be the maximum |I(P, L)| over all choices of an m-element point set P and an n-element
set of lines L.

1.1 Upper bound proof of Székely, 1997

A drawing of a graph G is a mapping that assigns vertices to points, and edges to continuous arcs
connecting the corresponding vertices. The interior of each arc (edge) does not contain any vertices.
A pair of arcs (edges) cross if their interiors have a point in common. The crossing number of a
graph G, denoted by cr(G), is the minimum number of pairs of arcs (edges) that cross over all
drawings of G.

A graph G is planar if and only if it has a drawing with no crossings.

Theorem 1.1 (Euler, 1750’s). Let G = (V, E) be a connected planar graph drawn in the plan with
|F'| faces. Then

VI—IE|+|F| =2
Note that G may contain multiple edges and loops.

Proof. Induction on |V|. Base case |V| = 1 is trivial. For |V| > 2, let e = uv be an edge connecting
two distinct vertices. By contracting e, we reduce the number of vertices and edges by one and the
proof is complete by the induction hypothesis.
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Corollary 1.2. If G is a simple (no loops or multiple edges) planar graph with n vertices, then
|E(G)| < 3n — 6.

Proof. Let F be the set of faces in a planar drawing of G. Then

IF| < Y Ifl=2lE|,

fer

which implies |F| < 2|E|/3. Plugging this into Euler’s formula gives

2 <|VI]-|E[+ (2[E|/3),



which implies |E| < 3|V| — 6.

Corollary 1.3. For any simple graph G = (V, E), cr(G) > |E| — 3|V]|.

Proof. 1f |E| > 3|V, and some drawing of G had fewer than |E| — 3|V| crossings, then we can
delete one edge from each crossing and obtain a planar graph with more than 3|V| edges. This

contradiction completes the proof.
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Theorem 1.4 (Crossing Lemma, Ajtai-Chva tal-Newborn-Szemerédi 1982, Leighton 1983). Let G
be a simple graph. Then
1B
G)>—— —|V|
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Proof. (Folklore) Consider any drawing of G = (V, F) in the plane, with n vertices, m edges, and z
crossings (pairs of edges that cross). We can assume that m > 4n, otherwise the statement is trivial.
Choose a random subset V/ C V by picking each vertex v € V independently with probability p.
Let G' = (V', E') be the subgraph induced on V’ with n’ vertices, m’ edges, and 2’ crossings in the
inherited (same) drawing. Then E[n'] = np, E[m/] = mp?, and E[z'] = zp?. By Lemma 1.3 and
linearity of expectation, we have

E[z] > E[m/] — 3E[n],

which implies

xp4 > mp2 — 3np.
By setting p = 4n/m (recall m > 4n), we have

S 1 m?
> ——.
~ 64 n?
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Proof of the Szemerédi-Trotter theorem. Consider a set P of m points and a set L of n lines
in the plane maximizing I(m,n). We define a drawing of a graph G where the vertices of G are the
points from P, and two points p, ¢ (vertices) are connected iff p and ¢ lie on a common line ¢ € L
next to each other. Since a line with k points defines k — 1 edges, our graph G contains I(m,n)—n
edges.

We have cr(G) < (g) < n?, since two lines cross at most once. On the other hand, by the
Crossing Lemma, we have

1 |E? 1 (I(m,n) —n)3
cr(G) > amz "Tu 2™

which implies I(m,n) < O(m?*n?/3 + m 4 n).
Theorem 1.5 (Székely 1997). Let P be a set of m points and L be a set of n pseudo lines in

the plane, that is, a family of curves in which every two members in L have at most one point in
common. Then I(P,L) < O(m*3n*3 +m 4 n).
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