
Lecture 4

1 Point-line incidences

Let P be a set of m (distinct) points and L be a set of n (distinct) lines in the plane. An incidence
is a pair (p, ℓ) ∈ P × L such that p ∈ ℓ. Denote I(P,L) = {(p, ℓ) ∈ P × L : p ∈ ℓ} and denote
I(m,n) to be the maximum |I(P,L)| over all choices of an m-element point set P and an n-element
set of lines L.

Theorem 1.1 (Szemerédi-Trotter, 1983). For all m,n ≥ 1

I(m,n) = O(m2/3n2/3 +m+ n)

and this bound is tight.

2 Cell decomposition

Theorem 2.1 (Cutting Lemma). Let L be a set of n lines in the plane, and let r be a parameter,
1 < r < n. Then the plane can be subdivided into t generalized triangles (this means intersections
of three half-planes) ∆1,∆2, ...∆t in such a way that the interior of each ∆i is intersected by at
most n/r lines of L, and we have t = O(r2).

Theorem 2.2 (Weak Cutting Lemma). Let L be a set of n lines in the plane, and let r be a
parameter, 1 < r < n. Then the plane can be subdivided into t generalized triangles (this means in-
tersections of three half-planes) ∆1,∆2, ...∆t in such a way that the interior of each ∆i is intersected
by at most n/r lines of L, and we have t = O(r2 log2 n).

Proof. Set s = 6r lnn, and select a random sample S ⊂ L of the given lines, by making s indepen-
dent random draws, drawing a random line from L each time with replacement (i.e one line can be
selected several times). Consider the arrangement of S. Any cell that is not a ”triangle”, partition
it further by adding diagonals connecting its vertices (say pick one vertex and draw segments from
it to all other vertices within the cell). We will show that there is a sample S that gives rise to the
collection of triangles as desired.

We say a triangle T ⊂ R
2 is dangerous if its interior is intersected by at least n/r lines from

L. Fix an arbitrary dangerous triangle T . Then the probability no line in our sample S intersect
the interior of T is at most (1− 1/r)s. Using the well-known inequality 1 + x ≤ ex we have this is
at most e−6 lnn = n−6.

Now call a triangle T interesting if it can appear in a triangulation for some sample S ⊂
L. Notice that all interesting triangles has vertices at some three vertices of the arrangement of
L. Therefore there are only at most n6 possible interesting triangles. Therefore with positive
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probability, a random sample will intersect the interiors (kill off) all dangerous-interesting triangles
simultaneously. Therefore all triangles in our sample has the property that a most n/r lines intersect
its interior and we are done.

P is a set of m points and L is a set of n lines. Since the incidence graph is K2,2-free, we have
the weak bound (using Kovari-Sos-Turan)

|I(m,n)| ≤ O(n
√
m+m)

and

|I(m,n)| ≤ O(m
√
n+ n)

However these bounds are good if the problem is off-balanced.

Another Proof of Szemeredi-Trotter. Here we show again n points n lines have at most O(n4/3)
incidences. We apply the cutting lemma with parameter r = n1/3, and divide the plane into at
most t = O(r2) = O(n2/3) generalized triangles ∆1, ...,∆t. We partition our points into two parts
P = V ∪ P0, where V are points that lie on the vertex of some ∆i, P0 are the remaining points
(not at the vertex of ∆i). Notice that |V | ≤ 3t = O(n2/3). Hence using the weak bound we have
|I(V,L)| ≤ O(n2/3√n+ n) < O(n4/3).

Let Pi denote the set of points from P that lies inside ∆i, but not on the vertices of ∆i. Let Li

be the set of lines intersecting the interior of ∆i. By the cutting lemma, |Li| ≤ n/r = O(n2/3).

t∑

i=1

|I(Li, Pi)| ≤
t∑

i=1

I(n2/3, |Pi|) =
t∑

i=1

O(|Pi|n1/3 + n2/3) = O(n4/3).

Finally, the only incidence pairs we have not counted are points on the boundary of ∆i, but not
at the vertex, and lines that borders ∆i. Let Lb denote all lines that borders ∆i for some i. Then
|Lb| ≤ O(n2/3). Just as before, |I(P,Lb)| ≤ O(n2/3√n+ n) < O(n4/3).
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[6] E. Szemerédi, W. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983),
381–392.

3


