
Lecture 3

1 Simplicial partitioning via cuttings

Given a set of points Pi ⊂ R
2, a line ℓ crosses Pi if not all members of Pi lie in one of the two closed

half-planes defined by ℓ.

Theorem 1.1. For any integer r ≥ log2 n, every n element planar point set P can be partitioned

into at r part P = P1 ∪ · · · ∪ Pr such that every line ℓ intersects the interior of at most O(
√
r)

triangles ∆i.

Proof. It is enough to prove the statement for the lines spanned by the point set P . Let L be the
set of at most n2 lines spanned by the pairs of points in P . We apply the cutting lemma to L with
parameter c

√
r, and subdivide R

2 = ∆1 ∪ · · · ∪∆r. By the pigeonhole principle, there is a part ∆
that contains at least n/r points from P . Set P1 to be a set of exactly n/r points inside ∆. For
each line ℓ that crosses ∆, we double it. By the cutting lemma, at most n2/c

√
r lines crosses ∆1.

Let L1 be the set of all lines now considered, that is |L1| ≤ n2 + n2/c
√
r.

We repeat the argument on the point set P \ P1 and the set of lines L1. We apply the cutting
lemma to L1 with parameter c

√
r − 1 and subdivide R

d = ∆1 ∪ · · · ∪ ∆r−1. By the pigeonhole
principle, there is a ∆ that contains at least n(1 − 1/r)/(r − 1) = n/r points from P . Set P2 be
the set of exactly n/r points inside ∆. We again double all lines intersecting the interior of ∆, and

by the cutting lemma we doubled at most |L1|
c
√
r−1

lines from L1. Set L2 to be the set of all current

lines, which implies

L2 ≤ n2

(

1 +
1

c
√
r

)

+
n2

(

1 + 1
c
√
r

)

c
√
r − 1

= n2

(

1 +
1

c
√
r

)(

1 +
1

c
√
r − 1

)

We continue this process, such that at the i-th step, we obtain P1, . . . , Pi, and a set of lines Li,
and apply the argument to P \ (P1 ∪ · · · ∪ Pi), which consists of n− in/r = n(1− i/r) points, and

Li ≤ n2

(

1 +
1

c
√
r

)(

1 +
1

c
√
r − 1

)

· · ·
(

1 +
1

c
√
r − i− 1

)

In the end we obtain our partition P1, . . . , Pr and triangles ∆1, . . . ,∆r. Moreover, we will have
a family of lines Lr such that

|Lr| ≤ n2e
6
∑

r

i=1

1

c

√

i ≤ n2eO(
√
r).

Suppose line ℓ intersects κ triangles ∆i. Then the number of copies of ℓ in Lr is 2κ. Combing the
above inequality gives κ ≤ O(

√
r), for r ≥ log2 n.
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Corollary 1.2. Given n points in the plane in general position, where n is even, there is a matching

of size n/2 such that any line intersects at most O(
√
n) members in the matching.

Proof. Apply the theorem with parameter r = n/2.

A geometric graph G is a graph drawn in the plane with vertices as points, and edges as straight
line segments. Two edges e1, e2 ∈ E(G) are mutually avoiding if they form the opposite sides of a
convex 4-gon (in other words, the line through one edge does not stab the other).

Theorem 1.3. If G is a complete n vertex geometric graph, then G contains
√
n pairwise mutually

avoiding edges.

Proof. Let M be the matching obtained from the corollary above. Let G′ = (M,E) be the graph
whose vertices are the members in M , and two vertices are adjacent if and only if they are not
mutually avoiding. By the corollary, the out degree of each vertex is at most O(

√
n), which implies

that |E(G′)| ≤ O(n3/2). By Turan’s theorem, G contains an independent set of size Ω(
√
n). The

corresponding edges are pairwise mutually avoiding.
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