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Convexity 

We begin with a review of basic geo1netric notions such as hyperplanes and 
affine subspaces in Rd, and we spend some time by discussing the notion 
of general position. Then we consider fundamental properties of convex sets 
in Rd, such as a theorem about the separation of disjoint convex sets by a 
hyperplane and Helly's theorem. 

1.1  Linear and Affine Subspaces, General Position 

Linear subspaces. Let R d denote the d-dimensional Euclidean space. The 
points are d-tuples of real numbers, x = (x1, x2, . . .  , xd ) · 

The space Rd is a vector space, and so we may speak of linear subspaccs, 
linear dependence of points, linear span of a set, and so on. A linear subspace 
of Rd is a subset closed under addition of vectors and under multiplication 
by real numbers. What is the geometric meaning? For instance, the linear 
subspaces of R 2 are the origin itself, all lines passing through the origin, 
and the whole of R 2• In R 3, we have the origin, all lines and planes passing 
through the origin, and R 3. 

Affine notions. An arbitrary line in R 2, say, is not a linear subspace unless 
it passes through 0. General lines are what arc called affine subspaces. An 
affine subspace of Rd has the form x + L, where x E R d is some vector and L 
is a linear subspace of Rd. Having defined affine subs paces, the other "affine" 
notions can be constructed by imitating the "linear" notions. 

What is the affine hull of a set X C Rd? It is the intersection of all affine 
subspaces of R d containing X .  As is well known, the linear span of a set X 
can be described as the set of all linear combinations of points of X.  What 
is an affine combination of points a1, a2, ... , an E R d that would play an 
analogous role? To see this, we translate the whole set by -an, so that an 
becomes the origin, we make a linear combination, and we translate back by 
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+an. This yields an expression of the form f3t (at - an) + {32 (a2 - an) + · · · +  
fJn(an - an) + an == f3tal + tJ2a2 + · · · + fJn-lan-1 + ( 1- f3t- f32 - · · · - f3n-t)an, 
where f3t, . . .  , f3n are arbitrary real numbers. Thus, an affine combination of 
points a 1 , ... , an E R d is an expression of the forrn 

Then indeed, it is not hard to check that the affine hull of X is the set of all 
affine combinations of points of X .  

The affine dependence of points a1, . . .  , an means that one of them can 
be written as an affine combination of the others. This is the sarne as the 
existence of real numbers a1, a2 , . . .  an, at least one of them nonzero, such 
that both 

(Note the difference: In an affine combination, the ai sum to 1 ,  while in an 
affine dependence, they sum to 0.) 

Affine dependence of a1 , . . •  , an is equivalent to linear dependence of the 
n-1 vectors a1 - an, a2 - an, . . .  , an-1 - an· Therefore, the maximum possible 
number of affinely independent points in Rd is d+1. 

Another way of expressing affine dependence uses "lifting" one dimension 
higher. Let bi == ( ai, 1 ) be the vector in R d+ 1 obtained by appending a new 
coordinate equal to 1 to ai; then a 1, . . .  , an are affinely dependent if and only 
if b1 , ... , bn are linearly dependent . This correspondence of affine notions in 
Rd with linear notions in Rd+l is quite general. For example, if we identify 
R 2 with the plane x3 == 1 in R 3 as in the picture, 

then we obtain a bijective correspondence of the k-dimensional linear sub­
spaces of R3 that do not lie in the plane x3 == 0 with (k-1 )-dimensional affine 
subs paces of R 2 • The drawing shows a 2-diinensional linear subspace of R 3 
and the corresponding line in the plane x3 = 1 .  (The satne works for affine 
subspaces of Rd and linear subspaces of Rd+t not contained in the subspace 
Xd+l = 0.) 

This correspondence also leads directly to extending the affine plane R2 
into the projective plane: To the points of R 2 corresponding to nonhorizontal 
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lines through 0 in R 3 we add points "at infinity," that correspond to hori­
zontal lines through 0 in R 3. But in this book we remain in the affine space 
most of the time, and we do not use the projective notions. 

Let a1 ,  a2 , . . .  , ad+l  be points in Rd, and let A be the d x d rnatrix with 
ai- ad+ I as the ith column, i = 1 ,  2, . . . , d. Then a1 ,  . . .  , ad+I are affi.nely 
independent if and only if A has d linearly independent columns, and this is 
equivalent to det(A) -# 0. We have a useful criterion of affine independence 
using a determinant. 

Affine subspaces of R d of certain diinensions have special names. A ( d-1 )­
dimensional affine subspace of R d is called a hyperplane (while the word plane 
usually means a 2-dimensional subspace of R d for any d) . One-dimensional 
subs paces are lines, and a k-dimensional affine subspace is often called a k­
fiat. 

A hyperplane is usually specified by a single linear equation of the forrn 
a1x1 + a2x2 + · · · + adxd =b. We usually write the left-hand side as the scalar 
product {a, x). So a hyperplane can be expressed as the set {x E Rd: (a, x) = 
b} where a E Rd \ {0} and b E R. A (closed) half-space in Rd is a set 
of the form {x E Rd: (a, x) > b} for some a E Rd \ {0}; the hyperplane 
{ x E Rd: (a, x) = b} is its boundary. 

General k-flats can be given either as intersections of hyperplanes or as 
affine images of R k (parametric expression) . In the first case, an intersection 
of k hyperplanes can also be viewed as a solution to a system Ax == b of linear 
equations, where x E Rd is regarded as a column vector, A is a k x d matrix, 
and b E R k. (As a rule, in forrnulas involving matrices, we interpret points 
of Rd as column vectors. )  

An affine mapping I: R k ---t R d has the form I: y H By + c for some d x k 
matrix B and some c E Rd, so it is a composition of a linear map with a 
translation. The image of f is a k'-flat for some k' < min(k, d) .  This k' equals 
the rank of the matrix B. 

General position. "We assume that the points (lines, hyperplanes, . . .  ) are 
in general position." This magical phrase appears in many proofs. Intuitively, 
general position means that no "unlikely coincidences" happen in the consid­
ered configuration. For example, if 3 points are chosen in the plane without 
any special intention, "randomly," they are unlikely to lie on a common line. 
For a planar point set in general position, we always require that no three 
of its points be collinear. For points in Rd in general position, we assume 
similarly that no unnecessary affine dependencies exist : No k < d+l points 
lie in a common (k-2)-ftat. For lines in the plane in general position, we 
postulate that no 3 lines have a common point and no 2 are parallel. 

The precise meaning of general position is not fully standard: It may 
depend on the particular context , and to the usual conditions mentioned 
above we sometimes add others where convenient. For example, for a planar 
point set in general position we can also suppose that no two points have the 
same x-coordinate. 



4 Chapter 1 :  Convexity 

What conditions are suitable for including into a "general position" as­
sumption? In other words, what can be considered as an unlikely coincidence? 
For example, let X be an n-point set in the plane, and let the coordinates of 
the ith point be (xi , Yi ) · Then the vector v(X) = (xi, x2 , . . .  , Xn , YI ,  Y2 , . . .  , Yn) 
can be regarded as a point of R2n .  For a configuration X in which x1 = x2 , 
i.e. , the first and second points have the same x-coordinate, the point v (X) 
lies on the hyperplane {XI = x2} in R 2n .  The configurations X where .'jome 
two points share the x-coordinate thus correspond to the union of (�) hy­
perplanes in R 2n .  Since a hyperplane in R 2n has ( 2n-dimensional) measure 
zero, almost all points of R 2n correspond to planar configurations X with all 
the points having distinct x-coordinates. In particular, if X is any n-point 
planar configuration and c > 0 is any given real number, then there is a con­
figuration X', obtained from X by moving each point by distance at most c, 
such that all points of X' have distinct x-coordinates. Not only that: Almost 
all small movements (perturbations) of X result in X' with this property. 

This is the key property of general position: Configurations in general 
position lie arbitrarily close to any given configuration (and they abound 
in any small neighborhood of any given configuration). Here is a fairly gen­
eral type of condition with this property. Suppose that a configuration X 
is specified by a vector t = ( t I ,  t2 , . • .  , tm) of m real numbers (coordinates) .  
The objects of X can be points in Rd, in which case m = dn and the tj 
are the coordinates of the points, but they can also be circles in the plane, 
with m = 3n and the tj expressing the center and the radius of each circle, 
and so on. The general position condition we can put on the configuration 
X is p( t) = p( ti, t2 , • • .  , tm) f= 0, where p is some nonzero polynomial in m 
variables. Here we use the following well-known fact (a consequence of Sard's 
theorem; see, e.g. , Bred on [Bre93] , Appendix C) : For any nonzero m-variate 
polynomial p(t1 , • • •  , tm) ,  the zero set {t  E Rm: p(t) = 0} has measure 0 in 
Rm . 

Therefore, almost all configurations X satisfy p(t) f= 0. So any condition 
that can be expressed as p(t) f= 0 for a certain polynomial p in m real 
variables, or, more generally, as PI ( t) =f. 0 or P2 ( t) =f. 0 or . . .  , for finitely or 
countably many polynomials PI , P2 , . . .  , can be included in a general position 
assumption. 

For example, let X be an n-point set in Rd, and let us consider the con­
dition "no d+ 1 points of X lie in a comrnon hyperplane." In other words, no 
d+1 points should be affinely dependent. As we know, the affine dependence 
of d+ 1 points means that a suitable d x d determinant equals 0. This deter­
minant is a polynomial (of degree d) in the coordinates of these d+ 1 points. 
Introducing one polynomial for every (d+1)-tuple of the points, we obtain 
(d�1 ) polynomials such that at least one of them is 0 for any configuration X 
with d+ 1 points in a common hyperplane. Other usual conditions for general 
position can be expressed similarly. 
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In many proofs, assuming general position simplifies matters consider­
ably. But what do we do with configurations Xo that are not in general 
position? We have to argue, somehow, that if the statement being proved is 
valid for configurations X arbitrarily close to our X0 , then it must be valid 
for X0 itself, too. Such proofs, usually called perturbation arguments, are of­
ten rather simple, and almost always somewhat boring. But sometimes they 
can be tricky, and one should not underestimate them, no matter how tempt­
ing this may be. A nontrivial example will be demonstrated in Section 5.5 
(Lemma 5.5.4) . 

Exercises 

1 .  Verify that the affine hull of a set X C R d equals the set of all affine 
combinations of points of X.  121 

2. Let A be a 2 x 3 matrix and let b E R 2 • Interpret the solution of the 
system Ax = b geometrically (in most cases, as an intersection of two 
planes) and discuss the possible cases in algebraic and geometric terms. 
[I] 

3. (a) What are the possible intersections of two ( 2-dimensional) planes 
in R4? What is the "typical" case (general position)? What about two 
hyperplanes in R4? 0 
(b) Objects in R4 can sometimes be "visualized" as objects in R3 moving 
in time (so time is interpreted as the fourth coordinate) . Try to visualize 
the intersection of two planes in R 4 discussed (a) in this way. 

1.2 Convex Sets, Convex Combinations, Separation 

Intuitively, a set is convex if its surface has no "dips" : 

� not allowed in a convex set 

1.2.1 Definition (Convex set) .  A set C C Rd is convex if for every two 
points x, y E C the whole segment xy is also contained in C. In other words, 
for every t E (0, 1], the point tx + ( 1  - t )y belongs to C. 

The intersection of an arbitrary family of convex sets is obviously convex. 
So we can define the convex hull o£ a set X C R d , denoted by conv( X) ,  as the 
intersection of all convex sets in R d containing X. Here is a planar example 
with a finite X:  

X • 

• • • 
• 

• 
• 

• 

• •  conv(X) 
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An alternative description of the convex hull can be given using convex 
combinations. 

1.2.2 Claim. A point x belongs to conv(X) if and only if there exist points 
Xt, x2 , . . •  Xn E X and nonnegative real numbers t1., t2 , ... , tn with 2:� 1 ti = 

1 such that x == I:� 1 tixi. 

The expression L� 1 tixi as in the claiin is called a convex cornbinat'ion 
of the points x1, x2 , . . . , Xn. (Compare this with the definitions of linear and 
affine combinations. )  

Sketch of proof. Each convex combination of points of X must lie in 
conv( X) :  For n = 2 this is by definition, and for larger n by induction. 
Conversely, the set of all convex combinations obviously contains X,  and it 
is convex. D 

In R d, it is sufficient to consider convex combinations involving at most 
d+l points: 

1.2.3 Theorem (Caratheodory's theorem) . Let X c Rd . Then each 
point of conv(X) is a convex combination of at most d+ 1 points of X. 

For example, in the plane, conv(X) is the union of all triangles with 
vertices at points of X.  The proof of the theorem is left as an exercise to the 
subsequent section. 

A basic result about convex sets is the separability of disjoint convex sets 
by a hyperplane. 

1.2.4 Theorem (Separation theorem) . Let C, D C Rd be convex sets 
with C n D = 0. Then there exists a hyperplane h such that C lies in one 
of the closed half-spaces determined by h, and D lies in the opposite closed 
half-space. In other words, there exist a unit vector a E Rd and a number 
b E R such that for all x E C we have (a, x) > b, and for all x E D we have 
(a, x) < b .  

If C and D are closed and at least one of them is bounded, they can be 
separated strictly; in such a way that C n h = D n h = 0. 

In particular, a closed convex set can be strictly separated from a point. 
This implies that the convex hull of a closed set X equals the intersection of 
all closed half-spaces containing X.  

Sketch of proof. First assume that C and D are compact (i.e. , closed and 
bounded) .  Then the Cartesian product C x D is a compact space, too, and 
the distance function (x, y) M l l x - Y l l  attains its minimum on C x D. That 
is, there exist points p E C and q E D such that the distance of C and D 
equals the distance of p and q. 

The desired separating hyperplane h can be taken as the one perpendic­
ular to the segment pq and passing through its midpoint: 
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It is easy to check that h indeed avoids both C and D. 
If D is cornpact and C closed, we can intersect C with a large ball and 

get a compact set C'. If the ball is sufficiently large, then C and C' have the 
same distance to D. So the distance of C and D is attained at some p E C' 
and q E D, and we can use the previous argument. 

For arbitrary disjoint convex sets C and D, we choose a sequence C1 C 
C2 c C3 c · · · of compact convex subsets of C with U� 1 Cn = C. For 
example, assuming that 0 E C, we can let Cn be the intersection of the 
closure of ( 1 - ! )C with the ball of radius n centered at 0. A similar sequence 
D1 C D2 C ·· · is chosen for D, and we let hn = {x E Rd : (an, x) = bn} be a 
hyperplane separating Cn from Dn, where an is a unit vector and bn E R. The 
sequence (bn)� 1 is bounded, and by compactness, the sequence of (d+l)­
component vectors (an, bn) E R d+ 1 has a cluster point (a, b) . One can verify, 
by contradiction, that the hyperplane h = { x E R d : (a, x) = b} separates C 
and D ( nonstrictly) .  D 

The irnportance of the separation theorem is documented by its presence 
in several branches of mathematics in various disguises. Its home territory is 
probably functional analysis, where it is formulated and proved for infinite­
dimensional spaces; essentially it is the so-called Hahn-Banach theorem. The 
usual functional-analytic proof is different from the one we gave, and in a 
way it is rnore elegant and conceptual. The proof sketched above uses more 
special properties of Rd, but it is quite short and intuitive in the case of 
compact C and D. 

Connection to linear programming. A basic result in the theory of 
linear programming is the Farkas lemma. It is a special case of the duality of 
linear programming (discussed in Section 10. 1) as well as the key step in its 
proof. 

1.2.5 Lemma (Farkas lemma, one of many versions) . For every d x n 
real matrix A, exactly one of the following cases occurs: 

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative 
solution x E Rn (all components of x are nonnegative and at least one 
of them is strictly positive). 
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(ii) There exists a y E Rd such that yT A is a vector with all entries strictly 
negative. Thus, if we multiply the jth equation in the system Ax= 0 by 
Yj and add these equations together, we obtain an equation that obviously 
has no nontrivial nonnegative solution, since all the coefficients on the 
left-hand sides are strictly negative, while the right-hand side is 0. 

Proof. Let us see why this is yet another version of the separation theorem. 
Let V c Rd be the set of n points given by the column vectors of the 
matrix A. We distinguish two cases: Either 0 E conv(V) or 0 ¢ conv(V) . 

In the former case, we know that 0 is a convex combination of the points 
of V, and the coefficients of this convex combination determine a nontrivial 
nonnegative solution to Ax = 0. 

In the latter case, there exists a hyperplane strictly separating V from 0, 
i.e., a unit vector y E Rd such that ( y, v) < (y, 0) = 0 for each v E V. This is 
just the y from the second alternative in the Farkas lemma. D 

Bibliography and remarks. Most of the n1aterial in this chapter is 
quite old and can be found in many surveys and textbooks. Providing 
historical accounts of such well-covered areas is not among the goals 
of this book, and so we mention only a few references for the specific 
results discussed in the text and add some remarks concerning related 
results. 

The concept of convexity and the rudiments of convex geometry 
have been around since antiquity. The initial chapter of the Handbook 
of Convex Geometry [GW93] succinctly describes the history, and the 
handbook can be recommended as the basic source on questions re­
lated to convexity, although knowledge has progressed significantly 
since its publication. 

For an introduction to functional analysis, including the Hahn­
Banach theorem, see Rudin [Rud91 ) ,  for example. The Farkas lemma 
originated in [Far94} (nineteenth century!) . More on the history of the 
duality of linear programming can be found, e.g. , in Schrijver's book 
[Sch86] . 

As for the origins, generalizations, and applications of Caratheo­
dory's theorem, as well as of Radon's lemma and Helly's theorem dis­
cussed in the subsequent sections, a recommendable survey is Eckhoff 
[Eck93] , and an older well-known source is Danzer, Griinbaum, and 
Klee [DGK63] . 

Caratheodory's theorem comes from the paper [Car07] , concerning 
power series and harmonic analysis. A somewhat similar theorem, due 
to Steinitz [Ste16] , asserts that if x lies in the interior of conv(X) 
for an X C Rd, then it also lies in the interior of conv(Y) for some 
Y C X with IYI < 2d. Bonnice and Klee (BK63] proved a common 
generalization of both these theorems: Any k-interior point of X is 
a k-interior point of Y for some Y C X with at most max(2k, d+l) 
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points, where x is called a k-interior point of X if it lies in the relative 
interior of the convex hull of some k+ 1 affinely independent points 
of X.  

Exercises 

1 .  Give a detailed proof of Claim 1 .2 .2. m 
2. Write down a detailed proof of the separation theorem. 0 

9 

3. Find an example of two disjoint closed convex sets in the plane that are 
not strictly separable. II1 

4. Let f: Rd ---+ Rk be an affine map. 
(a) Prove that if C C Rd is convex, then f(C) is convex as well. Is the 
preimage of a convex set always convex? m 
(b) For X C  Rd arbitrary, prove that conv{/(X)) = conv(f(X) ) .  CD 

5. Let X C  Rd. Prove that dian1(conv(X)) = diam(X) ,  where the dian1eter 
diam(Y) of a set Y is sup{ llx - y l l :  x, y E Y} .  0 

6. A set C C Rd is a convex cone if it is convex and for each x E C, the ray 
a± is fully contained in C. 
(a) Analogously to the convex and affine hulls, define the appropriate 
"conic hull" and the corresponding notion of "combination" (analogous 
to the convex and affine combinations) . 0 
(b) Let C be a convex cone in Rd and b fl. C a point. Prove that there 
exists a vector a with (a, x) > 0 for all X E C and (a, b) < 0. m 

7. (Variations on the Farkas lemma) Let A be a d  x n matrix and let b E  Rd. 
(a) Prove that the systen1 Ax = b has a nonnegative solution x E Rn if 
and only if every y E Rd satisfying yT A > 0 also satisfies yTb > 0. 0 
(b) Prove that the system of inequalities Ax < b has a nonnegative 
solution x if and only if every nonnegative y E Rd with y

T A > 0 also 
satisfies yTb > 0. 0 

8. (a) Let C C Rd be a compact convex set with a nonen1pty interior, and 
let p E C be an interior point. Show that there exists a line f passing 
through p such that the segment f n C is at least as long as any segment 
parallel to f and contained in c. m 
(b) Show that (a) may fail for C compact but not convex. III 

1.3 Radon's Lemma and Belly's Theorem 

Caratheodory's theorem from the previous section, together with Radon's 
lemma and Helly's theorem presented here, are three basic properties of con­
vexity in Rd involving the dimension. We begin with Radon's len1n1a. 

1.3.1 Theorem (Radon's lemma) . Let A be a set of d+2 points in Rd. 
Then there exist two disjoint subsets A1 , A2 c A such that 

conv(At) n conv(A2 ) =/: 0. 
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A point x E conv(A1 ) nconv(A2) , where A1 and A2 are as in the theorem, 
is called a Radon point of A, and the pair (A 1 , A2) is called a Radon partition 
of A (it is easily seen that we can require A1 U A2 = A). 

Here are two possible cases in the plane: 

Proof. Let A ==  {at ,  a2 , . . .  , ad+2} ·  These d+2 points are necessarily affi.nely 
dependent. That is, there exist real numbers a1 , . . .  , ad+2, not all of them 0, 

""'d+2 d ""'d+2 
such that L...,i=l ai == 0 an L...,i=l aiai = 0. 

Set P = {i :  ai > 0} and N = {i: ai < 0}. Both P and N are nonempty. 
We claim that P and N determine the desired subsets. Let us put A1 = 
{ ai: i E P} and A2 = { ai : i E N}.  We are going to exhibit a point x that is 
contained in the convex hulls of both these sets. 

Put S =  LiEP ai ; we also have S = - LiEN ai. Then we define 

( 1 . 1 )  

( 1 .2) 

The coefficients of the ai in ( 1 . 1) are nonnegative and sum to 1 ,  so x is a 
convex combination of points of At .  Similarly, ( 1 .2) expresses X as a convex 
combination of points of A2• 0 

Helly's theorem is one of the most famous results of a combinatorial nature 
about convex sets. 

1.3.2 Theorem (Helly's theorem) . Let Ot , 02, . . . , On be convex sets in 
Rd, n > d+l .  Suppose that the intersection of every d+1 of these sets is 
nonempty. Then the intersection of all the Oi is nonempty. 

The first nontrivial case states that if every 3 among 4 convex sets in 
the plane intersect, then there is a point common to all 4 sets. This can be 
proved by an elementary geometric argument, perhaps distinguishing a few 
cases, and the reader may want to try to find a proof before reading further. 

In a contrapositive form, Helly's theorem guarantees that whenever 
01 , 02, . . . , On are convex sets with n� 1 Oi = 0, then this is witnessed by 
some at most d+l sets with empty intersection among the Oi. In this way, 
many proofs are greatly simplified, since in planar problems, say, one can deal 
with 3 convex sets instead of an arbitrary number, as is amply illustrated in 
the exercises below. 
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It is very tempting and quite usual to formulate Helly's theorem as fol­
lows: "If every d+l among n convex sets in Rd intersect, then all the sets 
intersect." But, strictly speaking, this is false, for a trivial reason: For d >  2 ,  
the assumption as stated here is n1et by n = 2 disjoint convex sets. 

Proof of Helly's theorem. (Using Radon's lemma.) For a fixed d, we 
proceed by induction on n. The case n = d+l is clear, so we suppose that 
n > d+2 and that the statement of Helly's theorem holds for smaller n.  
Actually, n = d+2 is  the crucial case; the result for larger n follows at once 
by a simple induction. 

Consider sets C1 , C2 , . . .  , Cn satisfying the assumptions. If we leave out 
any one of these sets, the remaining sets have a nonempty intersection by 
the inductive assumption. Let us fix a point ai E ni#i Ci and consider the 
points a1 , a2 , . . .  , ad+2 . By Radon's lemma, there exist disjoint index sets 
I1 , I2 c { 1 ,  2, . . .  , d+2} such that 

We pick a point x in this intersection. The following picture illustrates the 
case d = 2 and n = 4: 

We claim that X lies in the intersection of all the ci . Consider some i E 
{ 1 ,  2, . . .  , n } ;  then i � 11 or i � I2 . In the former case, each aj with j E It lies 
in Ci, and so x E conv( { aj : j E 11 } ) C Ci. For i � /2 we similarly conclude 
that x E conv( { aj : j E /2 } )  C Ci. Therefore, x E n� 1 Ci . 0 

An infinite version of Helly's theorem. If we have an infinite collection 
of convex sets in Rd such that any d+1 of them have a common point, the 
entire collection still need not have a common point. Two examples in R 1 are 
the families of intervals { (0, 1/n) : n = 1 , 2, . . .  } and { [n, oo):  n = 1 , 2 ,  . . .  } .  
The sets in the first exan1ple are not closed, and the second example uses 
unbounded sets. For compact (i.e., closed and bounded) sets, the theorem 
holds: 

1.3.3 Theorem (Infinite version of Helly's theorem). Let C be an ar­
bitrary infinite family of compact convex sets in R d such that any d+ 1 of the 
sets have a nonempty intersection. Then all the sets of C have a nonempty 
intersection. 


