Edge intersection graphs of systems of grid paths with bounded number of bends

Andrei Asinowski^{a,*} Andrew Suk^b

^aCaesarea Rothschild Institute, University of Haifa, Haifa 31905, Israel.

^bCourant Institute, New York University, New York, NY 10012.

Abstract

We answer some of the questions raised by Golumbic, Lipshteyn and Stern regarding edge intersection graphs of paths on a grid (EPG graphs). We prove that for any $d \ge 4$, in order to represent all n vertex graphs with maximum degree d as edge intersection graphs of n paths, a grid of area $\Theta(n^2)$ is needed. A *bend* is a turn of a path at a grid point. Let B_k be the class of graphs that have an EPG representation such that each path has at most k bends. We show several results related to the classes B_k ; among them we prove that for any odd integer $k, B_k \subsetneq B_{k+1}$. Lastly, we show that only a very small fraction of all the $2^{\binom{n}{2}}$ labeled graphs on n vertices is in B_k .

Key words: Edge intersection graph; graph drawing.

suk@cims.nyu.edu (Andrew Suk).

Preprint submitted to Elsevier

^{*} Corresponding author. Phone number +972-4-8288343, Fax +972-4-8288181. Email addresses: andrei@cri.haifa.ac.il (Andrei Asinowski),

1 Introduction

In a recent paper [5], Golumbic, Lipshteyn and Stern introduced a notion of edge intersection graph of paths on a grid (EPG graphs) and studied some of their properties. Their research was motivated by studying graphs that come from circuit layout on a grid; see [5] for details, and [3,9] for more circuit layout problems.

Consider a family \mathcal{F} of paths on a grid. The edge intersection graph of \mathcal{F} is the graph whose vertices correspond to the paths from \mathcal{F} , two vertices being connected if and only if the coresponding paths share an edge of the grid (see Fig. 1 for an example). An *edge intersection graph of paths on a grid* (an EPG graph) is a graph which may be represented in this way. Thus EPG graphs generalize edge intersection graphs of paths on a tree (more specifically, on a tree of degree 4, studied in [6]).

Fig. 1. An EPG realization of a graph

A *bend* is a turn of a path at a grid point. Denote by B_k the class of graphs that have an EPG representation such that each path has at most k bends. Golumbic *et al.* [5] studied these families, especially B_1 . This research was motivated by the fact that in chip manufacturing, bends result in increasing the costs. In particular, they showed:

Theorem 1 (Golumbic, Lipshteyn and Stern [5]:)

- (1) Every graph with n vertices has an EPG representation on an $n \times 2n$ grid.
- (2) For each k, $B_k \subseteq B_{k+1}$; strong inclusions are conjectured.
- (3) Each tree is B_1 . (Follows $B_0 \subsetneq B_1$ because not every tree is an interval graph.)
- (4) $K_{3,3}$ and $K_{3,3} \setminus \{e\}$ (i.e. $K_{3,3}$ with one edge deleted) are not B_1 .
- (5) For any n, the complete bipartite graph $K_{m,n}$ is B_{2m-2} , see Fig. 2.

Fig. 2. $K_{m,\infty}$ is B_{2m-2}

In the present paper, we shall refine some of these results and answer some questions from [5].

Let $f_d(n)$ denote the minimum grid area required to represent all graphs on n vertices with maximum degree d. Recall (see Theorem 1(1)) that all n vertex graphs can be represented in an $n \times 2n$ grid. Since $K_{n/2,n/2}$ is a triangle free graph with $n^2/4$ edges, we need a grid of area $\Omega(n^2)$ in order to represent it as an EPG. Hence $f_{n-1}(n) = \Theta(n^2)$. However, in Section 2 we shall show that even for small d, a grid of size $\Theta(n^2)$ is required:

Theorem 2 For fixed $d \ge 4$ and sufficiently large n, $f_d(n) = \Theta(n^2)$.

In Section 3 we show several results concerning the classes B_k :

Theorem 3

(1) $K_{2,m}$ is B_1 if and only if $m \leq 4$. (In particular, $K_{2,5}$ is not B_1 .)

- (2) For fixed m and sufficiently large n, K_{m,n} is not B_{2m-3} (for shortness, we write this as "K_{m,∞} is not B_{2m-3}").
- (3) For an odd k, we have $B_k \subsetneqq B_{k+1}$.
- (4) $K_{m,n}$ is $B_{\max\{\lceil m/2 \rceil, \lceil n/2 \rceil\}}$. In particular, $K_{m,m}$ is $B_{\lceil m/2 \rceil}$.

In Section 4 we prove that only a very small fraction of all the $2^{\binom{n}{2}}$ labeled graphs on *n* vertices is in B_k :

Theorem 4 The number of labeled graphs on n vertices which can be represented as B_k -EPG is $2^{O(kn \log(kn))}$.

2 The area of the grid

In this section, we will prove Theorem 2. Clearly $f_d(n) \leq 4n^2$, since all n vertex graphs can be represented in an $n \times 2n$ grid. For the lower bound, we will use a triangle free *expander* graph.

Observation: For fixed $d \ge 4$ and sufficiently large n, there exists a triangle free graph G with n vertices and maximum degree at most d, such that for every $S \subset V(G)$ with $|S| \le n/2$, we have $\Gamma(S) \ge (2/3)|S| - (d-1)^3/3$ (we denote by $\Gamma(S)$ the set of vertices in $V(G) \setminus S$ that have neighbors in S).

Proof. Assume $d \ge 4$ and is even. If d is odd, then just set $d \leftarrow d - 1$. Now generate a random d-regular graph on n vertices G by taking d/2 permutations of $V = \{1, 2, ..., n\}, \pi_1, ..., \pi_{d/2}$, with each π_i chosen uniformly among all n! permutations and with all π_i indepedent. Then we have

$$E(G) = \{(i, \pi_j(i)), (i, \pi_j^{-1}(i)) : j = 1, ..., d/2, i = 1, ..., n\}$$

Now the eigenvalues of the adjacency matrix of an undirected graph G are real and can be ordered

$$\lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G)$$

Since G is d-regular, $\lambda_1 = d$. Friedman [7] showed that for fixed d and sufficiently large n, $\lambda_2(G) > 2\sqrt{d-1} + .1$ holds with probability less than 1/10. Now let X denote the number of triangles in G. Bollobas [2] showed that

$$\mathbb{E}[X] = \frac{(d-1)^3}{6}(1+o(1))$$

Using Markov Inequality, we obtain

$$\mathbb{P}[(\lambda_2(G) > 2\sqrt{d-1} + .1) \cup (X > (d-1)^3/3)] \le$$

$$\leq \mathbb{P}[\lambda_2(G) > 2\sqrt{d-1} + .1] + \mathbb{P}[X > (d-1)^3/3] \leq \frac{1}{10} + \frac{\mathbb{E}[X]}{(d-1)^3/3} \leq \frac{1}{10} + \frac{1}{2} < 1.$$

Hence there exists a *d*-regular graph with *n* vertices such that $\lambda_2(G) \leq 2\sqrt{d-1} + .1$, and the number of triangles in *G* is less than $(d-1)^3/3$. By Alon and Milman [1], for every $S \subset V(G)$ such that $|S| \leq n/2$, we have

$$\Gamma(S) \ge \frac{2(d - (2\sqrt{d - 1} + .1))}{3d - 2(2\sqrt{d - 1} + .1)} |S| \ge \frac{1}{3} |S|.$$

Now we can delete at most $(d-1)^3/3$ edges in order to remove all the triangles in G, and then remove all multiple edges and loops. Hence we have a triangle free graph on n vertices and maximum degree d, such that for every $S \subset V(G)$ such that $|S| \leq n/2$, $\Gamma(S) \geq (1/3)|S| - (d-1)^3/3$.

Proof of Theorem 2. Let G be the n vertex triangle free expander graph described in the observation above. Then let \mathcal{P} be a collection of n paths in an $s \times t$ grid such that the edge intersection graph of \mathcal{P} is G. We claim that there exists a vertical line l which intersects at least n/10 paths. Indeed, assume there is no such line, and let R(l) denote the paths which lay completely right to l and not intersecting l, and denote by I(l) the set of paths intersecting l. By assumption, we can move the line l such that $(1/2-1/10)n < |R(l)| \le n/2$. By construction of G, this implies for sufficiently large n

$$|I(l)| > (1/3)(1/2 - 1/10)n - \frac{(d-1)^3}{3} \ge n/10.$$

Hence we have a contradiction. Since G is triangle free, this implies

$$2t \ge |I(l)| \ge n/10 \quad \Rightarrow \quad t \ge n/20.$$

By the same argument, $s \ge n/20$, which implies

$$\frac{n^2}{400} \le f_d(n)$$

Proof of Theorem 3(1). Consider a realization of $K_{2,m}$ as B_1 . Denote the paths corresponding to the "left" side of $K_{2,m}$ by a_1, a_2 , those corresponding to the "right" side by b_1, b_2, \ldots, b_m . Denote the point of bend of a_i by A_i . Consider the following cases:

- (1) A_1 and A_2 coincide;
- (2) A_1 and A_2 do not coincide but lay on the same horizontal or vertical line;
- (3) A_1 and A_2 do not lay on the same horizontal or vertical line.

In Case 1, each b_i passes through $A = A_1 = A_2$ and contains points of a segment of each a_i in the neighborhood of A. Therefore it is possible to add at most two b_i s so that they do not meet.

In Case 2, each b_i has a horizontal segment passing through A, the midpoint of A_1A_2 . Therefore it is possible to add at most one b_i .

Fig. 3. Cases 1 and 2 in the proof of Theorem 3(1)

In Case 3, denote by D_1 the point of intersection of the horizontal line containing A_1 and the vertical line containing A_2 , and denote by D_2 the point of intersection of the vertical line containing A_1 and the horizontal line containing A_2 . The paths a_1 and a_2 may form several configurations – three of them appear on Fig. 4. However, it is easy to see that in all cases each b_i has the bend at D_1 or at D_2 . Therefore it is possible to add at most four b_i s: at most two having the bend at D_1 , and at most two having the bend at D_2 .

Fig. 4. Case 3 in the proof of Theorem 3(1)

Therefore for $m \ge 5$, the graph $K_{2,m}$ is not B_1 . A realization of $K_{2,4}$ as B_1 is shown at Fig. 5.

Fig. 5. $K_{2,4}$ as B_1

Proof of Theorem 3(2) and 3(3). Let m be fixed, and let n be a very large number. Consider a [hypothetic] realization of $K_{m,n}$ as B_{2m-3} . Let a_1, a_2, \ldots, a_m be the paths corresponding to the "left" side of $K_{m,n}, b_1, b_2, \ldots, b_n$ the paths corresponding to its "right" side.

Each a_i consists of 2m-2 segments. For each b_j consider the set of m segments, one segment from each a_i , that meet b_j (if b_j meets several segments of an a_i , choose one of them). There are $(2m-2)^m$ sets that may be obtained in this way: one of 2m - 2 segments is chosen for each of $m a_i$ s. Therefore, there is a set $A = \{\tilde{a}_i, \tilde{a}_2, \ldots, \tilde{a}_m\}$, each \tilde{a}_i being a segment of a_i , and B, a subset of $\{b_1, b_2, \ldots, b_n\}$ of size at least $\frac{n}{(2m-2)^m}$, such that all the members of B (paths) meet all the members of A (segments). For each $b_j \in B$, denote by \tilde{b}_{ij} the segment of b_j that meets \tilde{a}_i (if some b_j has several such segments, choose one of them).

Let L be the set of all vertical and horizontal lines that contain \tilde{a}_i s. There are at most m lines in this set. Let P be the set of points of intersection of lines from L. The set P contains at most $(m/2)^2$ points (on the other hand it may be empty – if all the lines in L are parallel).

Delete from B all b_j s that have a point from P as an inner point (there are at most $2(m/2)^2$ such paths).

Delete from B also all such b_j s that \tilde{b}_{ij} is not included in the interior of \tilde{a}_i for some i. (That is, we delete b_j s which have a \tilde{b}_{ij} with at most one endpoint inside \tilde{a}_i .) At most 2m members of B are deleted at this stage. Denote the obtained subset of B by C. Since n was assumed very large, C is not empty.

Consider a path b_j in C. For each $1 \le i \le m$, b_j has a segment \tilde{b}_{ij} contained in an \tilde{a}_i . Both endpoints of \tilde{b}_{ij} belong to a unique \tilde{a}_i . Therefore b_j has at least 2m-2 bends.

In particular, it follows from this result that 2m - 2 in Theorem 1(5) is tight: $B_{m,\infty}$ is B_{2m-2} but not B_{2m-3} . This proves Theorem 3(3): $B_k \subsetneq B_{k+1}$ for an odd k. This also means that there is no natural k such that each graph is B_k . **Proof of Theorem 3(4).** We start with a construction that shows that $K_{m,n}$ is $B_{\max\{m,n\}-1}$. Fig. 6 presents it for $K_{6,8}$. It is easy to see that it also works when m or n is odd: If we delete, say, the rightmost "vertical" path, then each "horizontal" path has an unnecessary bend and the "last" segment can be deleted.

Fig. 6. $K_{6,8}$ as B_7 – an example of $K_{m,n}$ as $B_{\max\{m,n\}-1}$

However, this construction may be improved. The following construction is a realization of $K_{m,n}$ as $B_{\max\{\lceil m/2 \rceil, \lceil n/2 \rceil\}}$. Fig. 7 presents it for $K_{6,8}$; it is clear how to generalize it for any even m and n; if m or/and n is odd, use the construction with m + 1 or/and n + 1 and delete the extra path(s).

We conjecture that this construction is the best possible. In other words, that $K_{m,n}$ is not $B_{\max\{\lceil m/2 \rceil, \lceil n/2 \rceil\}-1}$. In particular, that $K_{m,m}$ is not $B_{\lceil m/2 \rceil-1}$. If this conjecture is true, it would prove the strong inclusion $B_k \subsetneq B_{k+1}$ for each k.

Fig. 7. $K_{6,8}$ as B_4 – an example of $K_{m,n}$ as $B_{\max\{\lceil m/2 \rceil, \lceil n/2 \rceil\}}$

4 Bounding the number of n vertex graphs in B_k

Proof of Theorem 4. Since each path has at most k bends, then for $r = \lfloor (k/2) + 1 \rfloor$, each path consists of at most r horizontal and r vertical segments. Each path p_i can be described by the relations

$$x + y_{i,1}, c_{i,1} \le x \le d_{i,1}$$
 $x_{i,1} + y, c_{i,r+1} \le y \le d_{i,r+1}$

 $x + y_{i,2}, c_{i,2} \le x \le d_{i,2}$ $x_{i,2} + y, c_{i,r+2} \le y \le d_{i,r+2}$

 $x + y_{i,r}, c_{i,r} \le x \le d_{i,r}$ $x_{i,2r} + y, c_{i,2r} \le y \le d_{i,2r}$

We will assume that there are exactly r equations that represents the horizontal segments of p_i and r equations that represents the vertical lines of p_i . If there are fewer than r horizontal (or vertical) segments, we can just repeat any of the relations. Whether paths p_i and p_j cross, depends on the signs of the polynomials

$$P_{i,j,s,t} = x_{i,s} - x_{j,t} \quad Q_{i,j,s,t} = y_{i,s} - y_{j,t} \quad R_{i,j,s,t} = d_{i,s} - c_{j,t} \quad S_{i,j,s,t} = d_{j,t} - c_{i,s}$$

for $s, t \in \{1, 2, ..., r\}$, and $i, j \in \{1, 2, ..., n\}$ with $i \neq j$. Hence we have $2r^{2} \binom{n}{2}$ polynomials over 6rn variables with degree 1. Now recall that the Milnor-Thom theorem says that the number of sign patterns for m polynomials of degree d in v variables is at most $(4edm/v)^{v}$ [8,10,11]. Hence the number of sign patterns over our $2r^{2}\binom{n}{2}$ polynomials over 6rn variables with degree 1 is at most

$$\left(\frac{4e2r^2n^2}{6kn}\right) \le 2^{O(kn\log kn)}$$

Hence the number of edge-intersection relationships that can be defined on n*k*-bend-paths in a grid is $2^{O(kn \log kn)}$.

Acknowledgment

The authors would like to thank Martin Charles Golumbic and János Pach for the discussion and the suggestions.

References

- N. Alon and V.D. Milman. Eigenvalues, expanders and superconcentrators. Proc. 25th Annual FOCS, IEEE (1986), New York, 320-322.
- [2] B. Bollobas. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. *European Journal of Combinatorics* 1 (1980), 311-316.
- [3] M.L. Brady and M. Sarrafzadeh. Stretching a knock-knee layout for multiplayer wiring, *IEEE Transactions on Computers* **39** (1990), 148-151.
- [4] J. Czyzowicz, E. Kranakis and J. Urrutia. A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments. *Information Processing Letters* 66 (1998), 125-126.
- [5] M.C. Golumbic, M. Lipshteyn and M. Stern. Edge intersection graphs of single bend paths on a grid. To appear in *Networks*.
- [6] M.C. Golumbic, M. Lipshteyn and M. Stern. Representing edge intersection graphs of paths on degree 4 trees. *Discrete Mathematics* 308 (2008), 1381-1387.
- [7] J. Friedman. A proof of Alon's second eigenvalue conjecture. Memoirs of the A.M.S., to appear.
 http://www.math.ubc.ca/~jf/pubs/web_stuff/alon.html
- [8] J. Milnor. On the Betti number of real varieties. Proceedings of the American Mathematical Society 15 (1964), 275-280.
- [9] P. Molitor. A survey on wiring. Journal of Information Processing and Cybernetics / Elektronische Informationsverarbeitung und Kybernetik 27 (1991)
 3-19.
- [10] R. Thom. Sur l'homologie des varietes algebriques reelles. In: Differential and Combinatorial Topology (S. S. Cairns, ed.), University Press, Princeton, NJ, 1965.

[11] H. E. Warren. Lower bounds for approximation by linear maniforlds. Transactions of the American Mathematical Society 133 (1968), 167-178.