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Abstract

We answer some of the questions raised by Golumbic, Lipshteyn and Stern re-
garding edge intersection graphs of paths on a grid (EPG graphs). We prove that for
any d > 4, in order to represent all n vertex graphs with maximum degree d as edge
intersection graphs of n paths, a grid of area ©(n?) is needed. A bend is a turn of a
path at a grid point. Let By be the class of graphs that have an EPG representation
such that each path has at most £ bends. We show several results related to the
classes By; among them we prove that for any odd integer k, By ; By, 1. Lastly,
we show that only a very small fraction of all the 2(3) labeled graphs on n vertices

is in By.
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1 Introduction

In a recent paper [5], Golumbic, Lipshteyn and Stern introduced a notion of
edge intersection graph of paths on a grid (EPG graphs) and studied some of
their properties. Their research was motivated by studying graphs that come
from circuit layout on a grid; see [5] for details, and [3,9] for more circuit

layout problems.

Consider a family F of paths on a grid. The edge intersection graph of F is
the graph whose vertices correspond to the paths from F, two vertices being
connected if and only if the coresponding paths share an edge of the grid (see
Fig. 1 for an example). An edge intersection graph of paths on a grid (an EPG
graph) is a graph which may be represented in this way. Thus EPG graphs
generalize edge intersection graphs of paths on a tree (more specifically, on a

tree of degree 4, studied in [6]).

Fig. 1. An EPG realization of a graph

A bend is a turn of a path at a grid point. Denote by B; the class of graphs
that have an EPG representation such that each path has at most k& bends.
Golumbic et al. [5] studied these families, especially B;. This research was
motivated by the fact that in chip manufacturing, bends result in increasing

the costs. In particular, they showed:

Theorem 1 (Golumbic, Lipshteyn and Stern [5]:)



(1) Every graph with n vertices has an EPG representation on ann X 2n grid.

(2) For each k, By, C By.1; strong inclusions are conjectured.

(3) Each tree is By. (Follows By & By because not every tree is an interval
graph.)

(4) K33 and K33\ {e} (i.e. K33 with one edge deleted) are not Bj.

(5) For any n, the complete bipartite graph K, ,, is Bay—2, see Fig. 2.

1 — — — — —

I N I N R
TR R R R

m — — — — —

Fig. 2. Kmpo is Bgm_g

In the present paper, we shall refine some of these results and answer some

questions from [5].

Let fy(n) denote the minimum grid area required to represent all graphs on n
vertices with maximum degree d. Recall (see Theorem 1(1)) that all n vertex
graphs can be represented in an n x 2n grid. Since K, /2,2 is a triangle free
graph with n?/4 edges, we need a grid of area 2(n?) in order to represent it
as an EPG. Hence f,_1(n) = ©(n?). However, in Section 2 we shall show that

even for small d, a grid of size ©(n?) is required:

Theorem 2 For fized d > 4 and sufficiently large n, fi(n) = O(n?).
In Section 3 we show several results concerning the classes By:
Theorem 3

(1) Ky, is By if and only if m < 4. (In particular, Ko 5 is not By.)



(2) For fized m and sufficiently large n, K,,, is not Ba,_3 (for shortness,
we write this as “Kp, « 15 not Boy,—37).
(8) For an odd k, we have By, G By

(4) Ky, is Bmax{[m/2]7[n/g]}. In particular, Ky is B[m/g].

In Section 4 we prove that only a very small fraction of all the 2(5) labeled

graphs on n vertices is in By:

Theorem 4 The number of labeled graphs on n vertices which can be repre-

sented as By-EPG is 20knlog(kn)),

2 The area of the grid

In this section, we will prove Theorem 2. Clearly fy(n) < 4n?, since all n
vertex graphs can be represented in an n x 2n grid. For the lower bound, we

will use a triangle free expander graph.

Observation: For fixed d > 4 and sufficiently large n, there exists a triangle
free graph G with n vertices and maximum degree at most d, such that for
every S C V(G) with |S] < n/2, we have I'(S) > (2/3)|S]| — (d — 1)3/3 (we

denote by I'(S) the set of vertices in V(G) \ S that have neighbors in S).

Proof. Assume d > 4 and is even. If d is odd, then just set d < d — 1. Now
generate a random d-regular graph on n vertices G by taking d/2 permutations
of V.= {1,2,...,n}, m, ..., m4/2, with each m; chosen uniformly among all n!

permutations and with all 7; indepedent. Then we have



E(G) = {(i,m; (), (i, 7 (0) s G =1,y d/2, i=1,...,n}

Now the eigenvalues of the adjacency matrix of an undirected graph G are

real and can be ordered

Since G is d-regular, \; = d. Friedman [7] showed that for fixed d and suffi-
ciently large n, A2(G) > 2v/d — 1 + .1 holds with probability less than 1/10.

Now let X denote the number of triangles in G. Bollobas [2] showed that

Using Markov Inequality, we obtain
P[(A(G) > 2Vd -1+ .1)U (X > (d—1)%/3)] <

1, EX 1.1y
107 '

< PA(G) > 2vVd — 1+.1]+P[X > (d—1)*/3] < @—193=10"2

Hence there exists a d-regular graph with n vertices such that A\ (G) <
2v/d —1+ .1, and the number of triangles in G is less than (d — 1)*/3. By

Alon and Milman [1], for every S C V(G) such that |S| < n/2, we have

2d — (2V/d—1+.1)) 1
M8 =50 22vd—1+.1) e



Now we can delete at most (d—1)?/3 edges in order to remove all the triangles
in G, and then remove all multiple edges and loops. Hence we have a triangle
free graph on n vertices and maximum degree d, such that for every S C V(G)

such that |S| < n/2, T'(S) > (1/3)|S| — (d — 1)3/3. O

Proof of Theorem 2. Let GG be the n vertex triangle free expander graph
described in the observation above. Then let P be a collection of n paths in an
s x t grid such that the edge intersection graph of P is G. We claim that there
exists a vertical line [ which intersects at least n/10 paths. Indeed, assume
there is no such line, and let R(l) denote the paths which lay completely right
to [ and not intersecting [, and denote by I(l) the set of paths intersecting .
By assumption, we can move the line [ such that (1/2—1/10)n < |R(l)| < n/2.

By construction of GG, this implies for sufficiently large n

1I(D)] > (1/3)(1/2 — 1/10)n — (d—1)°

> n/10.

Hence we have a contradiction. Since G is triangle free, this implies

o > |I()| > n/10 = t>n/20.

By the same argument, s > n/20, which implies

n2

100 < fa(n).



3 Graphs realizable as B,-EPG

Proof of Theorem 3(1). Consider a realization of K5 ,, as B;. Denote the
paths corresponding to the “left” side of Ky, by a1, as, those corresponding
to the “right” side by by, bs,...,b,. Denote the point of bend of a; by A;.

Consider the following cases:

(1) A; and A, coincide;
(2) A; and A, do not coincide but lay on the same horizontal or vertical line;

(3) A; and A, do not lay on the same horizontal or vertical line.

In Case 1, each b; passes through A = A; = A and contains points of a
segment of each a; in the neighborhood of A. Therefore it is possible to add

at most two b;s so that they do not meet.

In Case 2, each b; has a horizontal segment passing through A, the midpoint

of A1 A,. Therefore it is possible to add at most one b;.

. .

Case 1 Case 2
Fig. 3. Cases 1 and 2 in the proof of Theorem 3(1)

In Case 3, denote by D; the point of intersection of the horizontal line con-
taining A; and the vertical line containing A,, and denote by Dy the point of
intersection of the vertical line containing A; and the horizontal line contain-
ing As. The paths a; and a; may form several configurations — three of them

appear on Fig. 4. However, it is easy to see that in all cases each b; has the



bend at D; or at Dy. Therefore it is possible to add at most four b;s: at most

two having the bend at Dy, and at most two having the bend at Ds.

a, a;
A D

1 g1
D, Az

Fig. 4. Case 3 in the proof of Theorem 3(1)

Therefore for m > 5, the graph Ks,, is not B;. A realization of Ky 4 as By is

shown at Fig. 5. O
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Fig. 5. K274 as Bl

Proof of Theorem 3(2) and 3(3). Let m be fixed, and let n be a very large
number. Consider a [hypothetic| realization of K, ,, as Ba,,—3. Let a1, as, . .., ay,
be the paths corresponding to the “left” side of K, ., b1,bs, ..., b, the paths

corresponding to its “right” side.

Each a; consists of 2m—2 segments. For each b; consider the set of m segments,
one segment from each a;, that meet b, (if b; meets several segments of an «;,

choose one of them). There are (2m — 2)™ sets that may be obtained in this



way: one of 2m — 2 segments is chosen for each of m a;s. Therefore, there is
a set A = {a;,as,...,a,}, each a; being a segment of a;, and B, a subset of
{b1,bs,...,b,} of size at least m, such that all the members of B (paths)
meet all the members of A (segments). For each b; € B, denote by E,-j the

segment of b; that meets @; (if some b; has several such segments, choose one

of them).

Let L be the set of all vertical and horizontal lines that contain a;s. There are
at most m lines in this set. Let P be the set of points of intersection of lines
from L. The set P contains at most (m/2)? points (on the other hand it may

be empty — if all the lines in L are parallel).

Delete from B all b;s that have a point from P as an inner point (there are at

most 2(m/2)? such paths).

Delete from B also all such b;s that Eij is not included in the interior of a;
for some 7. (That is, we delete b;s which have a l;ij with at most one endpoint
inside @;.) At most 2m members of B are deleted at this stage. Denote the

obtained subset of B by C'. Since n was assumed very large, C' is not empty.

Consider a path b; in C. For each 1 <1i < m, b; has a segment l;ij contained
in an a,;. Both endpoints of Eij belong to a unique a;. Therefore b; has at least

2m — 2 bends.

In particular, it follows from this result that 2m — 2 in Theorem 1(5) is tight:
Bin.oo i Bay—2 but not Bsy,_3. This proves Theorem 3(3): By, ; By, for an

odd k. This also means that there is no natural £ such that each graph is Bj.



Proof of Theorem 3(4). We start with a construction that shows that K, ,
iS Bmax{mn}—1. Fig. 6 presents it for Kgg. It is easy to see that it also works
when m or n is odd: If we delete, say, the rightmost “vertical” path, then

each “horizontal” path has an unnecessary bend and the “last” segment can

be deleted.

Fig. 6. K¢ s as By — an example of Ky, 5, a8 Brax{m,n}—1

However, this construction may be improved. The following construction is a
realization of Ky, , as Buax{[m/2],[n/21}- Fig. 7 presents it for Kgg; it is clear
how to generalize it for any even m and n; if m or/and n is odd, use the

construction with m + 1 or/and n + 1 and delete the extra path(s). O

We conjecture that this construction is the best possible. In other words, that
Ko n 18 00t Brax{[m/2],[n/2]}—1- In particular, that K, ,, is not B, 91—1. If this

conjecture is true, it would prove the strong inclusion By ; By for each k.

10



Fig. 7. K¢ as By — an example of Ky, as Byax{[m/2],[n/2]}

4 Bounding the number of n vertex graphs in By

Proof of Theorem 4. Since each path has at most k£ bends, then for r =
| (k/2)+1], each path consists of at most 7 horizontal and r vertical segments.

Each path p; can be described by the relations

T4 Y1, i1 <x<d Tin TV, Cirp1 <Y <dir1
T4 Yo, Cio2<x<d> Tio+Y, Cirre <Y <di,y2
T+ Yirs Cipr S x S di,r Li2r + Y, Cior S ) S di,ZT
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We will assume that there are exactly r equations that represents the hori-
zontal segments of p; and r equations that represents the vertical lines of p;.
If there are fewer than r horizontal (or vertical) segments, we can just repeat
any of the relations. Whether paths p; and p; cross, depends on the signs of

the polynomials

Pijst=is — % Qijst=Yis —Yjtx Rijst=dis— ¢t Sijse=djr— Cis

for s,t € {1,2,...,r}, and i,j € {1,2,...,n} with ¢ # j. Hence we have 27’2(’;)
polynomials over 6rn variables with degree 1. Now recall that the Milnor-
Thom theorem says that the number of sign patterns for m polynomials of
degree d in v variables is at most (4dedm/v)? [8,10,11]. Hence the number of
sign patterns over our 272 (Z) polynomials over 6rn variables with degree 1 is

at most

(462r2n2

< 2O(kn log kn)
6kn -

Hence the number of edge-intersection relationships that can be defined on n

k-bend-paths in a grid is 20k logkn) 0
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