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Abstract

We answer some of the questions raised by Golumbic, Lipshteyn and Stern re-

garding edge intersection graphs of paths on a grid (EPG graphs). We prove that for

any d ≥ 4, in order to represent all n vertex graphs with maximum degree d as edge

intersection graphs of n paths, a grid of area Θ(n2) is needed. A bend is a turn of a

path at a grid point. Let Bk be the class of graphs that have an EPG representation

such that each path has at most k bends. We show several results related to the

classes Bk; among them we prove that for any odd integer k, Bk $ Bk+1. Lastly,

we show that only a very small fraction of all the 2(
n

2
) labeled graphs on n vertices

is in Bk.
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1 Introduction

In a recent paper [5], Golumbic, Lipshteyn and Stern introduced a notion of

edge intersection graph of paths on a grid (EPG graphs) and studied some of

their properties. Their research was motivated by studying graphs that come

from circuit layout on a grid; see [5] for details, and [3,9] for more circuit

layout problems.

Consider a family F of paths on a grid. The edge intersection graph of F is

the graph whose vertices correspond to the paths from F , two vertices being

connected if and only if the coresponding paths share an edge of the grid (see

Fig. 1 for an example). An edge intersection graph of paths on a grid (an EPG

graph) is a graph which may be represented in this way. Thus EPG graphs

generalize edge intersection graphs of paths on a tree (more specifically, on a

tree of degree 4, studied in [6]).
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Fig. 1. An EPG realization of a graph

A bend is a turn of a path at a grid point. Denote by Bk the class of graphs

that have an EPG representation such that each path has at most k bends.

Golumbic et al. [5] studied these families, especially B1. This research was

motivated by the fact that in chip manufacturing, bends result in increasing

the costs. In particular, they showed:

Theorem 1 (Golumbic, Lipshteyn and Stern [5]:)
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(1) Every graph with n vertices has an EPG representation on an n×2n grid.

(2) For each k, Bk ⊆ Bk+1; strong inclusions are conjectured.

(3) Each tree is B1. (Follows B0 $ B1 because not every tree is an interval

graph.)

(4) K3,3 and K3,3 \ {e} (i.e. K3,3 with one edge deleted) are not B1.

(5) For any n, the complete bipartite graph Km,n is B2m−2, see Fig. 2.

... ...
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Fig. 2. Km,∞ is B2m−2

In the present paper, we shall refine some of these results and answer some

questions from [5].

Let fd(n) denote the minimum grid area required to represent all graphs on n

vertices with maximum degree d. Recall (see Theorem 1(1)) that all n vertex

graphs can be represented in an n × 2n grid. Since Kn/2,n/2 is a triangle free

graph with n2/4 edges, we need a grid of area Ω(n2) in order to represent it

as an EPG. Hence fn−1(n) = Θ(n2). However, in Section 2 we shall show that

even for small d, a grid of size Θ(n2) is required:

Theorem 2 For fixed d ≥ 4 and sufficiently large n, fd(n) = Θ(n2).

In Section 3 we show several results concerning the classes Bk:

Theorem 3

(1) K2,m is B1 if and only if m ≤ 4. (In particular, K2,5 is not B1.)
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(2) For fixed m and sufficiently large n, Km,n is not B2m−3 (for shortness,

we write this as “Km,∞ is not B2m−3”).

(3) For an odd k, we have Bk $ Bk+1.

(4) Km,n is Bmax{⌈m/2⌉,⌈n/2⌉}. In particular, Km,m is B⌈m/2⌉.

In Section 4 we prove that only a very small fraction of all the 2(n

2
) labeled

graphs on n vertices is in Bk:

Theorem 4 The number of labeled graphs on n vertices which can be repre-

sented as Bk-EPG is 2O(kn log(kn)).

2 The area of the grid

In this section, we will prove Theorem 2. Clearly fd(n) ≤ 4n2, since all n

vertex graphs can be represented in an n× 2n grid. For the lower bound, we

will use a triangle free expander graph.

Observation: For fixed d ≥ 4 and sufficiently large n, there exists a triangle

free graph G with n vertices and maximum degree at most d, such that for

every S ⊂ V (G) with |S| ≤ n/2, we have Γ(S) ≥ (2/3)|S| − (d − 1)3/3 (we

denote by Γ(S) the set of vertices in V (G) \ S that have neighbors in S).

Proof. Assume d ≥ 4 and is even. If d is odd, then just set d ← d − 1. Now

generate a random d-regular graph on n vertices G by taking d/2 permutations

of V = {1, 2, ..., n}, π1, ..., πd/2, with each πi chosen uniformly among all n!

permutations and with all πi indepedent. Then we have
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E(G) = {(i, πj(i)), (i, π
−1
j (i)) : j = 1, ..., d/2, i = 1, ..., n}

Now the eigenvalues of the adjacency matrix of an undirected graph G are

real and can be ordered

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)

Since G is d-regular, λ1 = d. Friedman [7] showed that for fixed d and suffi-

ciently large n, λ2(G) > 2
√

d− 1 + .1 holds with probability less than 1/10.

Now let X denote the number of triangles in G. Bollobas [2] showed that

E[X] =
(d− 1)3

6
(1 + o(1)).

Using Markov Inequality, we obtain

P[(λ2(G) > 2
√

d− 1 + .1) ∪ (X > (d− 1)3/3)] ≤

≤ P[λ2(G) > 2
√

d− 1+.1]+P[X > (d−1)3/3] ≤ 1

10
+

E[X]

(d− 1)3/3
≤ 1

10
+

1

2
< 1.

Hence there exists a d-regular graph with n vertices such that λ2(G) ≤

2
√

d− 1 + .1, and the number of triangles in G is less than (d − 1)3/3. By

Alon and Milman [1], for every S ⊂ V (G) such that |S| ≤ n/2, we have

Γ(S) ≥ 2(d− (2
√

d− 1 + .1))

3d− 2(2
√

d− 1 + .1)
|S| ≥ 1

3
|S|.
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Now we can delete at most (d−1)3/3 edges in order to remove all the triangles

in G, and then remove all multiple edges and loops. Hence we have a triangle

free graph on n vertices and maximum degree d, such that for every S ⊂ V (G)

such that |S| ≤ n/2, Γ(S) ≥ (1/3)|S| − (d− 1)3/3. �

Proof of Theorem 2. Let G be the n vertex triangle free expander graph

described in the observation above. Then let P be a collection of n paths in an

s× t grid such that the edge intersection graph of P is G. We claim that there

exists a vertical line l which intersects at least n/10 paths. Indeed, assume

there is no such line, and let R(l) denote the paths which lay completely right

to l and not intersecting l, and denote by I(l) the set of paths intersecting l.

By assumption, we can move the line l such that (1/2−1/10)n < |R(l)| ≤ n/2.

By construction of G, this implies for sufficiently large n

|I(l)| > (1/3)(1/2− 1/10)n− (d− 1)3

3
≥ n/10.

Hence we have a contradiction. Since G is triangle free, this implies

2t ≥ |I(l)| ≥ n/10 ⇒ t ≥ n/20.

By the same argument, s ≥ n/20, which implies

n2

400
≤ fd(n).

�
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3 Graphs realizable as Bk-EPG

Proof of Theorem 3(1). Consider a realization of K2,m as B1. Denote the

paths corresponding to the “left” side of K2,m by a1, a2, those corresponding

to the “right” side by b1, b2, . . . , bm. Denote the point of bend of ai by Ai.

Consider the following cases:

(1) A1 and A2 coincide;

(2) A1 and A2 do not coincide but lay on the same horizontal or vertical line;

(3) A1 and A2 do not lay on the same horizontal or vertical line.

In Case 1, each bi passes through A = A1 = A2 and contains points of a

segment of each ai in the neighborhood of A. Therefore it is possible to add

at most two bis so that they do not meet.

In Case 2, each bi has a horizontal segment passing through A, the midpoint

of A1A2. Therefore it is possible to add at most one bi.

Case 2

A A

Case 1

Fig. 3. Cases 1 and 2 in the proof of Theorem 3(1)

In Case 3, denote by D1 the point of intersection of the horizontal line con-

taining A1 and the vertical line containing A2, and denote by D2 the point of

intersection of the vertical line containing A1 and the horizontal line contain-

ing A2. The paths a1 and a2 may form several configurations – three of them

appear on Fig. 4. However, it is easy to see that in all cases each bi has the

7



bend at D1 or at D2. Therefore it is possible to add at most four bis: at most

two having the bend at D1, and at most two having the bend at D2.

22

A 1

A 2

A 1A 1

A 2

a 1

a 2 a 1

a 2

a 1

a 2

D1

D2

D1

D2

D1

DA

Fig. 4. Case 3 in the proof of Theorem 3(1)

Therefore for m ≥ 5, the graph K2,m is not B1. A realization of K2,4 as B1 is

shown at Fig. 5. �

Fig. 5. K2,4 as B1

Proof of Theorem 3(2) and 3(3). Let m be fixed, and let n be a very large

number. Consider a [hypothetic] realization of Km,n as B2m−3. Let a1, a2, . . . , am

be the paths corresponding to the “left” side of Km,n, b1, b2, . . . , bn the paths

corresponding to its “right” side.

Each ai consists of 2m−2 segments. For each bj consider the set of m segments,

one segment from each ai, that meet bj (if bj meets several segments of an ai,

choose one of them). There are (2m − 2)m sets that may be obtained in this
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way: one of 2m − 2 segments is chosen for each of m ais. Therefore, there is

a set A = {ãi, ã2, . . . , ãm}, each ãi being a segment of ai, and B, a subset of

{b1, b2, . . . , bn} of size at least n
(2m−2)m

, such that all the members of B (paths)

meet all the members of A (segments). For each bj ∈ B, denote by b̃ij the

segment of bj that meets ãi (if some bj has several such segments, choose one

of them).

Let L be the set of all vertical and horizontal lines that contain ãis. There are

at most m lines in this set. Let P be the set of points of intersection of lines

from L. The set P contains at most (m/2)2 points (on the other hand it may

be empty – if all the lines in L are parallel).

Delete from B all bjs that have a point from P as an inner point (there are at

most 2(m/2)2 such paths).

Delete from B also all such bjs that b̃ij is not included in the interior of ãi

for some i. (That is, we delete bjs which have a b̃ij with at most one endpoint

inside ãi.) At most 2m members of B are deleted at this stage. Denote the

obtained subset of B by C. Since n was assumed very large, C is not empty.

Consider a path bj in C. For each 1 ≤ i ≤ m, bj has a segment b̃ij contained

in an ãi. Both endpoints of b̃ij belong to a unique ãi. Therefore bj has at least

2m− 2 bends.

In particular, it follows from this result that 2m− 2 in Theorem 1(5) is tight:

Bm,∞ is B2m−2 but not B2m−3. This proves Theorem 3(3): Bk $ Bk+1 for an

odd k. This also means that there is no natural k such that each graph is Bk.
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Proof of Theorem 3(4). We start with a construction that shows that Km,n

is Bmax{m,n}−1. Fig. 6 presents it for K6,8. It is easy to see that it also works

when m or n is odd: If we delete, say, the rightmost “vertical” path, then

each “horizontal” path has an unnecessary bend and the “last” segment can

be deleted.

Fig. 6. K6,8 as B7 – an example of Km,n as Bmax{m,n}−1

However, this construction may be improved. The following construction is a

realization of Km,n as Bmax{⌈m/2⌉,⌈n/2⌉}. Fig. 7 presents it for K6,8; it is clear

how to generalize it for any even m and n; if m or/and n is odd, use the

construction with m + 1 or/and n + 1 and delete the extra path(s). �

We conjecture that this construction is the best possible. In other words, that

Km,n is not Bmax{⌈m/2⌉,⌈n/2⌉}−1. In particular, that Km,m is not B⌈m/2⌉−1. If this

conjecture is true, it would prove the strong inclusion Bk $ Bk+1 for each k.
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Fig. 7. K6,8 as B4 – an example of Km,n as Bmax{⌈m/2⌉,⌈n/2⌉}

4 Bounding the number of n vertex graphs in Bk

Proof of Theorem 4. Since each path has at most k bends, then for r =

⌊(k/2)+1⌋, each path consists of at most r horizontal and r vertical segments.

Each path pi can be described by the relations

x + yi,1, ci,1 ≤ x ≤ di,1 xi,1 + y, ci,r+1 ≤ y ≤ di,r+1

x + yi,2, ci,2 ≤ x ≤ di,2 xi,2 + y, ci,r+2 ≤ y ≤ di,r+2

...
...

...
...

x + yi,r, ci,r ≤ x ≤ di,r xi,2r + y, ci,2r ≤ y ≤ di,2r
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We will assume that there are exactly r equations that represents the hori-

zontal segments of pi and r equations that represents the vertical lines of pi.

If there are fewer than r horizontal (or vertical) segments, we can just repeat

any of the relations. Whether paths pi and pj cross, depends on the signs of

the polynomials

Pi,j,s,t = xi,s − xj,t Qi,j,s,t = yi,s − yj,t Ri,j,s,t = di,s − cj,t Si,j,s,t = dj,t − ci,s

for s, t ∈ {1, 2, ..., r}, and i, j ∈ {1, 2, ..., n} with i 6= j. Hence we have 2r2
(

n
2

)

polynomials over 6rn variables with degree 1. Now recall that the Milnor-

Thom theorem says that the number of sign patterns for m polynomials of

degree d in v variables is at most (4edm/v)v [8,10,11]. Hence the number of

sign patterns over our 2r2
(

n
2

)

polynomials over 6rn variables with degree 1 is

at most

(

4e2r2n2

6kn

)

≤ 2O(kn log kn)

Hence the number of edge-intersection relationships that can be defined on n

k-bend-paths in a grid is 2O(kn log kn). �
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