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Intersection Patterns of 

Convex Sets 

In Chapter 1 we covered three simple but basic theorems in the theory of 
convexity: Belly's, Radon's, and Caratheodory's. For each of them we present 
one closely related but more difficult theorem in the current chapter. These 
n1ore advanced relatives are selected, among the vast number of variations 
on the Helly-Radon-Caratheodory theme, because of their wide applicability 
and also because of nice techniques and tricks appearing in their proofs. 

The development started in this chapter continues in Chapters 9 and 10. 
One of the culrninations of this route is the (p, q)-theorern of Alon and Kleit­
rnan, which we will prove in Section 10.5. The proof ingzniously combines 
many of the tools covered in these three chapters and illustrates their power. 

Readers who do not like higher dimensions may want to consider dimen­
sions 2 and 3 only. Even with this restriction, the results are still interesting 
and nontri via] . 

8.1 The Fractional Belly Theorem 

Belly's theorem says that if every at most d+ 1 sets of a finite family of 
convex sets in Rd intersect , then all the sets of the farnily intersect . What 
if not necessarily all, but a large fraction of ( d+ 1 )-tuples of sets, intersect? 
The following theorem states that then a large fraction of the sets must have 
a point in common. 

8.1 .1  Theorem (Fractional Helly theorem) .  For every dimension d > 1 
and every a > 0 there exists a {3 = {3( d, a) > 0 with the following property. 
Let F1 , . . .  , Fn be convex sets in R d , n > d+ 1 ,  and suppose that for at least 
a (d�l) of the (d+1)-point index sets I c { 1 ,  2, . . .  ' n} , we have niEI Fi t= 0. 
Then there exists a point contained in at least f3n sets arnong tlle Fi . 
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Although simple, this is a key result , and many of the subsequent devel­
opments rely on it. 

The best possible value of j3 is j3 = 1 - (1 - a) I/(d+l) .  We prove the weaker 
estirnate j3 > d� 1 . 

Proof. For a subset I C { 1 ,  2 ,  . . .  , n } ,  let us write F1 for the intersection 

niEI Fi . 
First we observe that it is enough to prove the theorem for the Fi closed 

and hounded (and even convex polytopes) . Indeed, given sorne arbitrary 
F1 , . . .  , Fn , we choose a point PI E F1 for every (d+1}-tuple I with F1 f=- 0 
and we define Ff = conv{p1 : F1 -=/= 0, i E I} ,  which is a polytope contained in 
Fi· If the theorem holds for these Ff, then it also holds for the original Fi · 
In the rest of the proof we thus assume that the Fi , and hence also all the 
non empty F1, are compact. 

Let <Iexdenote the lexicographic ordering of the points of Rd by their 
coordinate vectors. It is easy to show that any compact subset of Rd has a 
unique lexicographically minimum point (Exercise 1 ) .  We need the following 
consequence of Helly's theorem. 

8. 1 .2  Lemma. Let I C { 1 ,  2, . . . , n} be an index set with F1 # 0, and let v 

be the (unique) lexicographically minimum point of Fr . Then there exists an 
at most d-element subset J C I such that v is the lexicographically minimum 
point of FJ as well. 

In other words, the minimum of the intersection F1 is always enforced by 
some at most d "constraints" Pi , as is illustrated in the following drawing 
(note that the two constraints determining the minimum are not determined 
uniquely in the picture) : 

Proof. Let C = {x E Rd: x <zex v } . It is easy to check that C is 
convex. Since v is the lexicographic minimum of F1 , we have CnF1 = 
0. So the family of convex sets consisting of C plus the sets Pi with 
i E I has an empty intersection. By Helly's theorem there are at most 
d+ 1 sets in this family whose intersection is ernpty as well. The set 
C must be one of them, since all the others contain v. The remaining 
at most d sets yield the desired index set J. D 

Let us remark that instead of taking the lexicographically Ininimuin point , 
one can consider a point minimizing a generic linear function. That formula­
tion is perhaps more intuitive, but it appears slightly more complicated for 
rigorous presentation. 
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We can now finish the proof of the fractional Helly theorem. For each of 
the a(

d
�1) index sets I of cardinality d+1 with F1 =/= 0, we fix a d-element 

set J = J(I) c I such that FJ has the same lexicographic minimum as F1 . 
The theoren1 follows by double counting. Since the number of distinct 

d-tuples J is at most (�) , one of them, call it Jo, appears as J(I) for at least 
a(

d
�1) / (�) = a�+¥ distinct I. Each such I has the form Jo U {i} for some 

i E { 1 ,  2, . . .  , n } .  The lexicographic minimum of FJ0 is contained in at least 
d + a  �+1 > a d�I sets among the Fi . Hence we may set f3 = 

d�l . D 

Bibliography and remarks. The fractional Helly theorem is due 
to Katchalski and Liu [KL 79] . The quantitatively sharp version with 
/3 = 1- ( 1 -a)

1
/(d

+l) was proved by Kalai [Kal84] (and the main result 
needed for it was proved independently by Eckhoff [Eck85J , too) . Ac­
tually, there is an exact result: If the maximum size of an intersecting 
subfamily in a family of n convex sets in Rd is m, then the smallest 
possible number of intersecting ( d+ 1 )-tuples is attained for the family 
consisting of n - m + d hyperplanes in general position and m - d 
copies of Rd. But there are many other essentially different examples 
attaining the same bound. 

These assertions are consequences of considerably more general re­
sults about the possible intersection patterns of convex sets in Rd. 

For explaining some of them it is convenient to use the language of 
simplicial complexes. Let F = { F1 , F2 , . . .  , Fn} be a family of con­
vex sets in Rd. The nerve N(F) of :F is the simplicial complex with 
vertex set { 1 ,  2, . . .  , n} whose simplices are all I C { 1 ,  2, . . . , n} such 
that niEJ Fi =I= 0. A simplicial complex obtainable as N(F) for some 
family of convex sets in Rd is called d-representable. A characteri­
zation of d-representable simplicial complexes for a given d is most 
likely out of reach. There are several useful necessary conditions for 
d-representability. One certainly worth mentioning is d-collapsibility, 
which means that a given simplicial complex IC can be reduced to the 
void complex by a sequence of elementary d-collapsings, where an ele­
mentary d-collapsing consists in deleting a face S E IC of dimension at 
most d- 1 that lies in a unique rnaxiinal face of IC and all the faces of IC 
containing S. The proof of the d-collapsibility of every d-representable 
complex (Wegner [Weg75] ) uses an idea quite similar to the proof of 
the fractional Helly theorem. 

While no characterization of d-representable complexes is known, 
the possible !-vectors of such complexes (where fi is the number of 
i-dimensional simplices, which correspond to ( i+ 1 )-wise intersections 
here) are fully characterized by a conjecture of Eckhoff, which was 
proved by Kalai [Kal84] , [Kal86] by an impressive combination of sev­
eral methods. The same characterization applies to d-collapsible com­
plexes as well (and even to the rnore general d-Leray cornplexes; these 


