New bounds on the maximum number of edges in k-quasi-planar graphs

Andrew Suk and Bartosz Walczak

September 21, 2013

Definition

A topological graph is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is simple if every pair of its edges intersect at most once.

Definition

A topological graph is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is simple if every pair of its edges intersect at most once.

Crossing edges

Two edges in a topological graph cross if they have a common interior point.

Planar graphs

Application of Euler's Polyhedral formula:

Theorem

Every n-vertex topological graph with no crossing edges contains at most $3 n-6=O(n)$ edges.

Relaxation of planarity.

Conjecture

Every n-vertex topological graph with no k pairwise crossing edges contains at most $O(n)$ edges.

All such graphs are called k-quasi-planar.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O(n)$ edges.
Generated a lot of research, 1990's - present, different variations.
Conjecture has been proven for
(1) $k=3$ by Pach, Radoičić, Tóth 2003, Ackerman and Tardos 2007.
(2) $k=4$ by Ackerman 2008 .

Open for $k \geq 5$.

Best known bound for $k \geq 5$

Theorem (Pach, Radoičić, Tóth 2003)

Every n-vertex k-quasi-planar graph has at most $n(\log n)^{4 k-12}$ edges.

As an application of a separator Theorem by Matoušek 2013:

Theorem (Fox and Pach 2013)

Every n-vertex k-quasi-planar graph has at most $n(\log n)^{O(\log k)}$ edges.

Best known bound for $k \geq 5$

Theorem (Fox and Pach 2013)

Every n-vertex k-quasi-planar graph has at most $n(\log n)^{O(\log k)}$ edges.

Two edges may cross n^{n} times.

Best known bound for $k \geq 5$

Theorem (Fox and Pach 2013)

Every n-vertex k-quasi-planar graph has at most $n(\log n)^{O(\log k)}$ edges.

Contribution: We improve this bound in two special cases.

Special Case 1

- G is an n-vertex k-quasi planar graph,
- extra condition: every pair of edges have at most t (say 1000) points in common.
- $|E(G)| \leq n(\log n)^{O(\log k)}$, Fox and Pach 2008

Theorem (Main Result, Suk and Walczak 2013)

Every n-vertex k-quasi-planar graph with no two edges having more than t points in common, has at most $c_{k, t} n(\log n)^{1+\epsilon}$ edges.

For any $\epsilon>0$.

Special Case 2

G is a simple k-quasi-planar graph:

(1) $|E(G)| \leq n(\log n)^{O(k)}$, Pach, Shahrokhi, Szegedy 1996.
(2) $|E(G)| \leq n(\log n)^{O(\log k)}$, Fox and Pach 2008.
(3) $|E(G)| \leq c_{k} n(\log n)^{1+\epsilon}$, Fox, Pach, Suk 2012.
$|E(G)| \leq c_{k} n(\log n)^{1+\epsilon}$, Fox, Pach, Suk 2012.
Using new/different methods:

Theorem (Main Result, Suk and Walczak 2013)

Every n-vertex simple k-quasi-planar graph has at most $O(n \log n)$ edges.

$G=(V, E) k$-quasi-planar graph.

E is a family of $|E(G)|$ curves in the plane, no k pairwise intersecting.

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

One of the color classes has at least $|E(G)| / c_{k}$ curves (edges).

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

$$
\frac{|E(G)|}{c_{k}} \leq 3 n-6
$$

Conjecture (Fox and Pach, False)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Conjecture is False!

```
Theorem (Pawlik, Kozik, Krawczyk, Lason, Micek, Trotter, Walczak, 2012)
```

For infinite values n, there exists a family F of n segments in the plane, no three members pairwise cross, and $\chi(F)>\Omega(\log \log n)$.

Conjecture (Fox and Pach, False)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Conjecture true under extra conditions?

Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members pairwise intersect. Furthermore, suppose
(1) F is simple,
(2) there is a curve β that intersects every member in F exactly once,
then $\chi(F) \leq c_{k}$.

Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members pairwise intersect. Furthermore, suppose
(1) F is simple,
(2) there is a curve β that intersects every member in F exactly once,
then $\chi(F) \leq c_{k}$.

Andrew Suk and Bartosz Walczak

Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members pairwise intersect. Furthermore, suppose
(1) F is simple,
(2) there is a curve β that intersects every member in F exactly once,
then $\chi(F) \leq c_{k}$.
(1) Coloring intersection graphs of arcwise connected sets in the plane, Lason, Micek, Pawlik and Walczak 2013.
(2) Coloring intersection graphs of x-monotone curves in the plane, Suk 2012.
(3) On bounding the chromatic number of L-graphs, McGuinness 1996.

Application of coloring result.

Corollary (Suk and Walczak, 2013)

For fixed $k>1$, let G be a simple n-vertex k-quasi planar graph. If G contains an edge that crosses every other edge, then $|E(G)| \leq O(n)$.

Lemma (Fox, Pach, Suk, 2012)

Let G be a simple topological graph on n vertices. Then there are subgraphs $G_{1}, G_{2}, \ldots, G_{m} \subset G$ such that

$$
\frac{|E(G)|}{c \log n} \leq \sum_{i=1}^{m}\left|E\left(G_{i}\right)\right|
$$

every edge in G_{i} is disjoint to every edge in $G_{j} . G_{i}$ has an edge that crosses every other edge in G_{i}.

G_{I}

Andrew Suk and Bartosz Walczak

Let $n_{i}=\left|V\left(G_{i}\right)\right|$.

- $\left|E\left(G_{i}\right)\right| \leq c_{k} n_{i}$, Suk and Walczak 2013 (main result).

$$
\frac{|E(G)|}{c \log n} \leq \sum_{i=1}^{m}\left|E\left(G_{i}\right)\right| \leq \sum_{i=1}^{m} c_{k} n_{i}=c_{k}\left(n_{1}+n_{2}+\cdots+n_{m}\right)=c_{k} n
$$

Theorem (Main Result, Suk and Walczak 2013)

Every n-vertex k-quasi-planar graph with no two edges having more than t points in common, has at most $c_{k, t} n(\log n)^{1+\epsilon}$ edges.

Theorem (Main Result, Suk and Walczak 2013)

Every n-vertex simple k-quasi-planar graph has at most $O(n \log n)$ edges.

Goal: $|E(G)| \leq O(n)$.

Other problems

Conjecture (Fox and Pach)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

False.

Conjecture

Let F be a family of curves in the plane such that no k members pairwise intersect. Then F contains $\frac{|F|}{c_{k}}$ pairwise disjoint members.

Open!

Thank you!

