A note on $K_{k,k}$ -cross free families

Andrew Suk

Courant Institute of Mathematical Sciences New York University, New York, USA suk@cims.nyu.edu

Submitted: Aug 19, 2008; Accepted: Oct 20, 2008; Published: Oct 29, 2008 Mathematics Subject Classifications: 05D05

Abstract

We give a short proof that for any fixed integer k, the maximum number size of a $K_{k,k}$ -cross free family is linear in the size of the groundset. We also give tight bounds on the maximum size of a K_k -cross free family in the case when \mathcal{F} is intersecting or an antichain.

Introduction

Let $\mathcal{F} \subset 2^{[n]}$. Two sets $A, B \in \mathcal{F}$ cross if

- 1. $A \cap B \neq \emptyset$.
- 2. $B \not\subset A$ and $A \not\subset B$.

 $\mathcal{F} \subset 2^{[n]}$ is said to be K_k -cross free if it does not contain k sets $A_1, ..., A_k$ such that A_i cross A_j for every $i \neq j$. Karzanov and Lomonosov conjectured that for any fixed k, the maximum size of a K_k -cross free family $\mathcal{F} \subset 2^{[n]}$ is O(n) [5], [1]. The conjecture has been proven for k = 2 and k = 3 [7], [4]. For general k, the best known upperbound is $2(k-1)n \log n$, which can easily be seen by a double counting argument on the number of sets of a fixed size. We say that \mathcal{F} is $K_{k,k}$ -cross free if it does not contain 2k sets $A_1, ..., A_k, B_1, ..., B_k \in \mathcal{F}$ such that A_i crosses B_j for all i, j. In this paper, we prove the following:

Theorem 1: Let $\mathcal{F} \subset 2^{[n]}$ be a $K_{k,k}$ -cross free family. Then $|\mathcal{F}| \leq (2k-1)^2 n$.

In this section, we give upperbounds on the maximum size of certain classes of K_k cross free families. By applying Dilworth's Theorem [2], one can obtain a tight bound

for intersecting k-cross free families. Recall a family $\mathcal{F} \subset 2^{[n]}$ is intersecting if for every $A, B \in \mathcal{F}, A \cap B \neq \emptyset$.

Theorem 2: Let $\mathcal{F} \subset 2^{[n]}$ be a family that is k-cross free and intersecting. Then $|\mathcal{F}| \leq (k-1)n$, and this bound is asymptotically tight.

We also obtain tight bounds for K_k -cross free families that is an *antichain*. Recall \mathcal{F} is an *antichain* if no set in \mathcal{F} is a subset of another.

Theorem 3: For $k \geq 3$, let $\mathcal{F} \subset 2^{[n]}$ be a family that is k-cross free and an antichain. Then $|\mathcal{F}| \leq (k-1)n/2$, and this bound is asymptotically tight.

We define sub(A) to be the number of subsets of A in \mathcal{F} . Our next Theorem gives a non-trivial upperbound on a K_k -cross free family based on the number of subsets in each set of our family.

Theorem 4: Let $\mathcal{F} \subset 2^{[n]}$ be a K_k -cross free family and let m be defined as

$$m = \left\lceil \frac{\sum\limits_{A \in \mathcal{F}} \frac{sub(A)}{|A|}}{|\mathcal{F}|} \right\rceil$$

Then $|\mathcal{F}| \leq 4(k-1)m \cdot n$.

Hence if sub(A) = c|A| for all $A \in \mathcal{F}$ and some constant c, then $|\mathcal{F}| = O(n)$. Now we define the *geometric mean* of \mathcal{F} as

$$\gamma(\mathcal{F}) = \left(\prod_{A \in \mathcal{F}} |A|\right)^{1/|\mathcal{F}|}$$

As an easy corollary to theorem 4, we have

Corollary 5: Let $\mathcal{F} \subset 2^{[n]}$ be a K_k -cross free family. Then

$$|\mathcal{F}| \le 8(k-1)^2 n \log(\gamma(\mathcal{F})).$$

For simplicity we omit floor and ceiling signs whenever these are not crucial and all logarithms are in the natural base e.

$K_{k,k}$ -cross free family

Proof of Theorem 1: Induction on n. BASE CASE: n = 1 is trivial. INDUCTIVE STEP: For $x \in [n]$, let

$$\mathcal{F}_1 = \{ A \in \mathcal{F} : x \in A \text{ and } A \setminus x \in \mathcal{F} \}$$

The electronic journal of combinatorics 15 (2008), #N39

and

$$\mathcal{F}_2 = \{A \setminus x : A \in \mathcal{F}\}.$$

Now notice that there does not exists 2k sets $A_1, ..., A_{2k} \in \mathcal{F}_1$ such that $A_1 \subset A_2 \subset \cdots \subset A_{2k}$, since otherwise in \mathcal{F} , A_i crosses $A_j \setminus x$ for each $i \leq k$ and $j \geq k+1$. Hence the longest chain in \mathcal{F}_1 is 2k-1 and since \mathcal{F}_1 is intersecting, the largest antichain in \mathcal{F}_1 is 2k-1. By Dilworth's Theorem [2], this implies

$$|\mathcal{F}_1| \le (2k-1)^2.$$

Since $\mathcal{F}_2 \subset 2^{[n-1]}$ is a $K_{k,k}$ -cross free family, by the induction hypothesis, we have

$$|\mathcal{F}| = |\mathcal{F}_1| + |\mathcal{F}_2| \le (2k-1)^2(n-1) + (2k-1)^2 \le (2k-1)^2n.$$

For the lower bound of a $K_{k,k}$ -cross free family, One can consider the edges of a (k-1)/2 regular graph on n vertices plus the singletons. Here we have a family with (k+1)n/2 sets, and each set crosses at most k-1 other sets. Hence this family is $K_{k,k}$ -cross free with (k-1)/2 sets.

On the maximum size of certain K_k -cross free families

In this section, we will prove Theorems 2,3,4, and Corollary 5.

Proof of Theorem 2: Notice that the largest anitchain must be of size at most k - 1. Hence by Dilworth's Theorem [2], we can decompose (\mathcal{F}, \subset) into (k - 1) chains. Since each chain has length at most n, this implies $|\mathcal{F}| \leq (k - 1)n$. Notice that this bound is asymptotically tight. For $i \leq j$, let $[i, j] \in 2^{[n]}$ denote the set $[j] \setminus [i - 1]$, and let C_l be a chain of n - 1 sets defined as

$$C_{l} = \left(\bigcup_{j=l+1}^{n} [l+1, j] \cup \{1\}\right) \bigcup \left(\bigcup_{j=1}^{l-1} [l+1, n] \cup [1, j]\right) \bigcup \{1\}$$

for $l \ge 2$. Then the family $\mathcal{F} = \left(\bigcup_{l=2}^{k} C_l\right) \bigcup [n]$ is K_k -cross free intersecting family with (k-1)(n-2) + 2 sets and is intersecting.

Proof of Theorem 3: Induction on n. BASE CASE: n = 1 is trivial. INDUCTIVE STEP: (case 1) suppose there is a singleton set $\{x\} \in \mathcal{F}$. Then define $\mathcal{F}' = \{A : x \notin A\}$. Then notice

$$|\mathcal{F}| = 1 + |\mathcal{F}'|.$$

Since \mathcal{F}' is a $K_{k,k}$ -cross free family and an antichain, by the induction hypothesis we have

$$|\mathcal{F}| = 1 + |\mathcal{F}'| \le 1 + (k-1)(n-1)/2 = 1 + (k-1)n/2 - (k-1)/2 \le (k-1)n/2$$

The electronic journal of combinatorics 15 (2008), #N39

Since $k \geq 3$. (case 2) Now we can assume all sets in \mathcal{F} has size at least 2. Recall that the fractional chromatic number $\chi_f(G)$ of a graph G is defined as the minimum of the fractions a/b such that V(G) can be covered by a independent sets in such a way that every vertex is covered at least b times [6]. Let G = (V, E) be the non-crossing graph of \mathcal{F} . I.e. V(G) = F and $(A, B) \in E(G)$ if A and B do not cross. Then for each set $A \in V$, we will assign any two number $(a, b) \subset A$ to A. This is possible since all sets in \mathcal{F} have size at least 2. Since \mathcal{F} is an antichain, this implies that $\chi_f(G) \leq n/2$. Hence by using the inequality $\frac{|G|}{\alpha(G)} \leq \chi_f(G)$, we have

$$\frac{|\mathcal{F}|}{(k-1)} \le \frac{n}{2} \quad \Rightarrow \quad |\mathcal{F}| \le \frac{(k-1)n}{2}$$

Notice that this bound is tight since we can consider the edges of a (k-1) regular bipartite graph. Clearly this family has (k-1)n/2 sets and is an antichain since every set is of size 2. By Hall's Theorem [8], the edges of this graph decomposes into k-1 perfect matchings, which implies this family is K_k -cross free.

Proof of Theorem 4: We will start by blowing up each vertex by a factor of 2m, i.e. each vertex $x \in [n]$ is replaced by 2m vertices $\{x_1, x_2, ..., x_{2m}\}$ such that for every $A \in \mathcal{F}$ such that $x \in A$, all $x_1, ..., x_{2m} \in A$. Now let G be the non-crossing graph of \mathcal{F} . Then we will assign a random color to A by picking a vertex $x \in A$. Then for any $B \in \mathcal{F}$ such that $B \subset A$,

$$\mathbb{P}[B \text{ and } A \text{ are the same color}] = \frac{1}{2m|A|} \frac{1}{2m|B|} 2m|B| = \frac{1}{2m|A|}$$

Let X denote the number of monochromatic edges in G. Then

$$\mathbb{E}[X] = \sum_{A \in \mathcal{F}} \sum_{B \subset A} \frac{1}{2m|A|}$$

by definition of m, we have

$$\mathbb{E}[X] = \sum_{A \in \mathcal{F}} \sum_{B \subset A} \frac{1}{2m|A|} \le \sum_{A \in \mathcal{F}} \frac{1}{2} = |\mathcal{F}|/2.$$

Now we delete one set from each monochromatic edge to obtain a K_k -cross free family \mathcal{F}' with at least $|\mathcal{F}|/2$ sets and is properly colored. Hence by the inequality $|G|/\alpha(G) \leq \chi(G)$, we have

$$\frac{|\mathcal{F}|/2}{k-1} \le 2mn.$$

Hence $|\mathcal{F}| \leq 4(k-1)mn$.

Proof of Corollary 5: Since $sub(A) \leq 2(k-1)|A|\log(|A|)$, this implies

$$\frac{\sum_{A \in \mathcal{F}} \frac{sub(A)}{|A|}}{|\mathcal{F}|} \le \frac{\sum_{A \in \mathcal{F}} 2(k-1)\log(|A|)}{|\mathcal{F}|} = 2(k-1)\log(\gamma(\mathcal{F})).$$

By Theorem 4, we have

$$|\mathcal{F}| \le 8(k-1)^2 n \log(\gamma(\mathcal{F}))$$

Cross versus strongly-cross

In other places, two sets cross are defined a bit differently. To avoid confusion, we say that two sets $A, B \in 2^{[n]}$ strongly-cross if $A \cap B \neq \emptyset$, $A \not\subset B$, $B \not\subset A$, and $A \cup B \neq [n]$ (This is how cross is defined in [4]). However one can obtain asymptotically similar results for strongly-crossing by the next Theorem. Let G be a graph on k vertices $v_1, ..., v_k$. Then \mathcal{F} is a G-strongly-cross free family if there does not exist k sets $A_1, ..., A_k \in \mathcal{F}$ such that A_i strongly crosses A_j if and only if v_i is adjacent to v_j in G. Likewise \mathcal{F} is a G-cross free family if there does not exist k sets $A_1, ..., A_k \in \mathcal{F}$ such that A_i crosses A_j if and only if v_i is adjacent to v_j in G.

Theorem 6: Let $\mathcal{F} \subset 2^{[n]}$ be a maximum *G*-strongly-cross free family and $\mathcal{H} \subset 2^{[n]}$ be a maximum *G*-cross free family. Then

$$|\mathcal{H}| \le |\mathcal{F}| \le 2|\mathcal{H}|$$

Proof: Clearly $|\mathcal{H}| \leq |\mathcal{F}|$. Now let $F_1 = \{A \in \mathcal{F} : |A| \leq \lfloor n/2 \rfloor\}$ and $\mathcal{F}_2 = \mathcal{F} \setminus \mathcal{F}_1$. Then notice that if $A, B \in \mathcal{F}_1$ intersect, then $A \cup B \neq [n]$. Hence \mathcal{F}_1 is a *G*-cross free family, which implies $|\mathcal{F}_1| \leq |\mathcal{H}|$. Now define $\mathcal{F}_2^c = \{A^c : A \in \mathcal{F}_2\}$, where $A^c = [n] \setminus A$. Then notice that $A, B \in \mathcal{F}_2$ strongly-cross if and only if $A^c, B^c \in \mathcal{F}_2^c$ strongly-cross. Also notice for $A^c, B^c \in \mathcal{F}_2^c$ such that $A^c \cap B^c \neq \emptyset$, then $A^c \cup B^c \neq [n]$. Hence \mathcal{F}_2^c is a *G*-cross free family, which implies $|\mathcal{F}_2| = |\mathcal{F}_2^c| \leq |H|$. Therefore $|\mathcal{F}| = |\mathcal{F}_1| + |\mathcal{F}_2| \leq 2|\mathcal{H}|$.

Acknowledgment

I would like to thank Janos Pach for introducing me to the Karzanov-Lomonosov Conjecture.

References

- [1] P. Brass, W. Moser, and J. Pach, "Research Problems in Discrete Geometry." Berlin, Germany: Springer-Verlag, 2005.
- [2] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161-166.
- [3] A.Dress, J.Koolen, V.Moulton, 4n-10, Annals of Combinatorics, 8, 2005, 463-471.
- [4] T. Fleiner, The size of 3-cross-free families, Combinatorica, 21 (2001), 445-448.
- [5] A.V. Karzanov, M.V. Lomonosov, Flow systems in undirected networks (in Russian), in: Mathematical Programming, O.I. Larichev, ed., Institute for System Studies, Moscow 1978, 59-66.
- [6] J. Matoušek, "Using the Borsuk-Ulam theorem", Springer Verlag, Berlin, 2003.
- [7] P. Pevzner, Non-3-crossing families and multicommodity flows, Am. Math. Soc. Trans. Series 2,158 (1994), 201-206. (Translated from: P. Pevzner, Linearity of the cardinality of 3-cross-free sets, in: Problems of Discrete Optimization and Methods for Their Solution, A. Fridman (ed.), Moscow, 1987, pp. 136-142, in Russian).
- [8] D. West, "Introduction to graph theory", 2nd Edition, Prentice Hall, 2000.