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Abstract

We give a short proof that for any fixed integer k, the maximum number size of a

Kk,k-cross free family is linear in the size of the groundset. We also give tight bounds

on the maximum size of a Kk-cross free family in the case when F is intersecting

or an antichain.

Introduction

Let F ⊂ 2[n]. Two sets A, B ∈ F cross if

1. A ∩ B 6= ∅.

2. B 6⊂ A and A 6⊂ B.

F ⊂ 2[n] is said to be Kk-cross free if it does not contain k sets A1, ..., Ak such that Ai

cross Aj for every i 6= j. Karzanov and Lomonosov conjectured that for any fixed k, the
maximum size of a Kk-cross free family F ⊂ 2[n] is O(n) [5], [1]. The conjecture has
been proven for k = 2 and k = 3 [7], [4]. For general k, the best known upperbound is
2(k − 1)n log n, which can easily be seen by a double counting argument on the number
of sets of a fixed size. We say that F is Kk,k-cross free if it does not contain 2k sets
A1, ..., Ak, B1, ..., Bk ∈ F such that Ai crosses Bj for all i, j. In this paper, we prove the
following:

Theorem 1: Let F ⊂ 2[n] be a Kk,k-cross free family. Then |F| ≤ (2k − 1)2n.

In this section, we give upperbounds on the maximum size of certain classes of Kk-
cross free families. By applying Dilworth’s Theorem [2], one can obtain a tight bound
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for intersecting k-cross free families. Recall a family F ⊂ 2[n] is intersecting if for every
A, B ∈ F , A ∩ B 6= ∅.

Theorem 2: Let F ⊂ 2[n] be a family that is k-cross free and intersecting. Then |F| ≤
(k − 1)n, and this bound is asymptotically tight.

We also obtain tight bounds for Kk-cross free families that is an antichain. Recall F is
an antichain if no set in F is a subset of another.

Theorem 3: For k ≥ 3, let F ⊂ 2[n] be a family that is k-cross free and an antichain.

Then |F| ≤ (k − 1)n/2, and this bound is asymptotically tight.

We define sub(A) to be the number of subsets of A in F . Our next Theorem gives a
non-trivial upperbound on a Kk-cross free family based on the number of subsets in each
set of our family.

Theorem 4: Let F ⊂ 2[n] be a Kk-cross free family and let m be defined as

m =









∑

A∈F

sub(A)
|A|

|F|









Then |F| ≤ 4(k − 1)m · n.

Hence if sub(A) = c|A| for all A ∈ F and some constant c, then |F| = O(n). Now we
define the geometric mean of F as

γ(F) =

(

∏

A∈F

|A|

)1/|F|

As an easy corollary to theorem 4, we have

Corollary 5: Let F ⊂ 2[n] be a Kk-cross free family. Then

|F| ≤ 8(k − 1)2n log(γ(F)).

For simplicity we omit floor and ceiling signs whenever these are not crucial and all
logarithms are in the natural base e.

Kk,k-cross free family

Proof of Theorem 1: Induction on n. BASE CASE: n = 1 is trivial. INDUCTIVE STEP:
For x ∈ [n], let

F1 = {A ∈ F : x ∈ A and A \ x ∈ F}
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and
F2 = {A \ x : A ∈ F}.

Now notice that there does not exists 2k sets A1, ..., A2k ∈ F1 such that A1 ⊂ A2 ⊂ · · · ⊂
A2k, since otherwise in F , Ai crosses Aj \ x for each i ≤ k and j ≥ k + 1. Hence the
longest chain in F1 is 2k − 1 and since F1 is intersecting, the largest antichain in F1 is
2k − 1. By Dilworth’s Theorem [2], this implies

|F1| ≤ (2k − 1)2.

Since F2 ⊂ 2[n−1] is a Kk,k-cross free family, by the induction hypothesis, we have

|F| = |F1| + |F2| ≤ (2k − 1)2(n − 1) + (2k − 1)2 ≤ (2k − 1)2n.

�

For the lower bound of a Kk,k-cross free family, One can consider the edges of a (k−1)/2
regular graph on n vertices plus the singletons. Here we have a family with (k + 1)n/2
sets, and each set crosses at most k − 1 other sets. Hence this family is Kk,k-cross free
with (k − 1)/2 sets.

On the maximum size of certain Kk-cross free families

In this section, we will prove Theorems 2,3,4, and Corollary 5.

Proof of Theorem 2: Notice that the largest anitchain must be of size at most k − 1.
Hence by Dilworth’s Theorem [2], we can decompose (F ,⊂) into (k − 1) chains. Since
each chain has length at most n, this implies |F| ≤ (k − 1)n. Notice that this bound is
asymptotically tight. For i ≤ j, let [i, j] ∈ 2[n] denote the set [j] \ [i − 1], and let Cl be a
chain of n − 1 sets defined as

Cl =

(

n
⋃

j=l+1

[l + 1, j] ∪ {1}

)

⋃

(

l−1
⋃

j=1

[l + 1, n] ∪ [1, j]

)

⋃

{1}

for l ≥ 2. Then the family F =

(

k
⋃

l=2

Cl

)

⋃

[n] is Kk-cross free intersecting family with

(k − 1)(n − 2) + 2 sets and is intersecting.
�

Proof of Theorem 3: Induction on n. BASE CASE: n = 1 is trivial. INDUCTIVE STEP:
(case 1) suppose there is a singleton set {x} ∈ F . Then define F ′ = {A : x 6∈ A}. Then
notice

|F| = 1 + |F ′|.

Since F ′ is a Kk,k-cross free family and an antichain, by the induction hypothesis we have

|F| = 1 + |F ′| ≤ 1 + (k − 1)(n − 1)/2 = 1 + (k − 1)n/2 − (k − 1)/2 ≤ (k − 1)n/2.
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Since k ≥ 3. (case 2) Now we can assume all sets in F has size at least 2. Recall that
the fractional chromatic number χf(G) of a graph G is defined as the minimum of the
fractions a/b such that V (G) can be covered by a indepdendent sets in such a way that
every vertex is covered at least b times [6]. Let G = (V, E) be the non-crossing graph of
F . I.e. V (G) = F and (A, B) ∈ E(G) if A and B do not cross. Then for each set A ∈ V ,
we will assign any two number (a, b) ⊂ A to A. This is possible since all sets in F have
size at least 2. Since F is an antichain, this implies that χf(G) ≤ n/2. Hence by using

the inequality |G|
α(G)

≤ χf (G), we have

|F|

(k − 1)
≤

n

2
⇒ |F| ≤

(k − 1)n

2
.

Notice that this bound is tight since we can consider the edges of a (k−1) regular bipartite
graph. Clearly this family has (k− 1)n/2 sets and is an antichain since every set is of size
2. By Hall’s Theorem [8], the edges of this graph decomposes into k−1 perfect matchings,
which implies this family is Kk-cross free.

�

Proof of Theorem 4: We will start by blowing up each vertex by a factor of 2m, i.e. each
vertex x ∈ [n] is replaced by 2m vertices {x1, x2, ..., x2m} such that for every A ∈ F such
that x ∈ A, all x1, ..., x2m ∈ A. Now let G be the non-crossing graph of F . Then we will
assign a random color to A by picking a vertex x ∈ A. Then for any B ∈ F such that
B ⊂ A,

P[B and A are the same color] =
1

2m|A|

1

2m|B|
2m|B| =

1

2m|A|

Let X denote the number of monochromatic edges in G. Then

E[X] =
∑

A∈F

∑

B⊂A

1

2m|A|

by definition of m, we have

E[X] =
∑

A∈F

∑

B⊂A

1

2m|A|
≤
∑

A∈F

1

2
= |F|/2.

Now we delete one set from each monochromatic edge to obtain a Kk-cross free family F ′

with at least |F|/2 sets and is properly colored. Hence by the inequality |G|/α(G) ≤ χ(G),
we have

|F|/2

k − 1
≤ 2mn.

Hence |F| ≤ 4(k − 1)mn.
�
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Proof of Corollary 5: Since sub(A) ≤ 2(k − 1)|A| log(|A|), this implies

∑

A∈F

sub(A)
|A|

|F|
≤

∑

A∈F

2(k − 1) log(|A|)

|F|
= 2(k − 1) log(γ(F)).

By Theorem 4, we have
|F| ≤ 8(k − 1)2n log(γ(F)).

�

Cross versus strongly-cross

In other places, two sets cross are defined a bit differently. To avoid confusion, we say that
two sets A, B ∈ 2[n] strongly-cross if A ∩ B 6= ∅, A 6⊂ B, B 6⊂ A, and A ∪ B 6= [n] (This
is how cross is defined in [4]). However one can obtain asymptotically similar results for
strongly-crossing by the next Theorem. Let G be a graph on k vertices v1, ..., vk. Then F
is a G-strongly-cross free family if there does not exist k sets A1, ..., Ak ∈ F such that Ai

strongly crosses Aj if and only if vi is adjacent to vj in G. Likewise F is a G-cross free
family if there does not exist k sets A1, ..., Ak ∈ F such that Ai crosses Aj if and only if
vi is adjacent to vj in G.

Theorem 6: Let F ⊂ 2[n] be a maximum G-strongly-cross free family and H ⊂ 2[n] be a

maximum G-cross free family. Then

|H| ≤ |F| ≤ 2|H|

Proof: Clearly |H| ≤ |F|. Now let F1 = {A ∈ F : |A| ≤ bn/2c} and F2 = F \ F1. Then
notice that if A, B ∈ F1 intersect, then A ∪ B 6= [n]. Hence F1 is a G-cross free family,
which implies |F1| ≤ |H|. Now define F c

2 = {Ac : A ∈ F2}, where Ac = [n] \ A. Then
notice that A, B ∈ F2 strongly-cross if and only if Ac, Bc ∈ F c

2 strongly-cross. Also notice
for Ac, Bc ∈ F c

2 such that Ac ∩ Bc 6= ∅, then Ac ∪ Bc 6= [n]. Hence F c
2 is a G-cross free

family, which implies |F2| = |F c
2 | ≤ |H|. Therefore |F| = |F1| + |F2| ≤ 2|H|.

�
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