Geometric Ramsey Theory

Andrew Suk

May 21, 2013

Andrew Suk Geometric Ramsey Theory



Introduction

For k-uniform hypergraphs.

Definition

We define the Ramsey number Ry (n) to be the minimum integer
N such that any N-vertex k-uniform hypergraph H contains either
a clique or an independent set of size n.

Theorem (Ramsey 1930)

For all k,n, the Ramsey number Ry (n) is finite.

Estimate Ry (n), k fixed and n — oc.
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Known estimates

Theorem (Erdés-Szekeres 1935, ErdSs 1947)

272 < Ry(n) < 2%".

A\

Theorem (Erdés-Rado 1952, Erdds-Hajnal 1960's)

207 < Ry(n) < 22",

tk_l(cn2) < Rk(n) < tk(c/n).

A\

Tower function t;(x) is given by t1(x) = x and tj;1(x) = 2409,
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Combinatorial Problem

29" < Ry(n) < 22°".

Problem

Close the gap on R3(n)

Conjecture (Erdés, $500 problem)

2*" < Rs(n)

Erdos-Hajnal Stepping Up Lemma: x < Ry(n), then
2% S Rk+1(n) for k > 3

Would imply R4(n) = 2229(,1), and Rk(n) = t,(©(n)).

Is there a geometric construction showing 22 < R3(n)?
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ES(n) exists

V = {N points in the plane},
E = {triples having a clockwise orientation}.
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V = {N points in the plane},
E = {triples having a clockwise orientation}.
Many graphs and hypergraphs defined geometrically.
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V = {N tubes of length / and radius 1 in R9}
E = {pairs that intersect}.

Semi-algebraic hypergraphs.
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semi-algebraic sets (Tarski cell)

Definition

A set A C RY is called semi-algebraic if there are polynomials

fi,fa, ..., fr € R[xq,..., x4] and a Boolean formula ®(Xi, Xz, ..., X;),
where Xi, ..., X, are variables attaining values “true” and “false”,
such that

A= {x R O (fi(x) > 0,..., fi(x) > 0)} .

® involves unions, intersections, and complementations. Assume
Quantifier-free (Tarski's Theorem).

A has complexity at most t if d,r < t and each deg(f;) < t.

Examples: hyperplanes, balls, boxes, tubes, etc. in RY.
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Encode sets to points

Let V = {Aq,..., Ay} be a family of N semi-algebraic sets in R,
each set with complexity at most t.

N

_—
S

A = {x R O (fi(x) > 0,..., fi(x) > 0)} .

Encode each set: A; — p; € RY for g = q(t).
V ={p1,...,pn}, N points in R9.
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Encode sets to points

Let V = {Aq1,..., Ay} be a family of N semi-algebraic sets in RY,
each set with complexity at most t.

N

_—
S

A = {x eRY: d(f(x)>0,.... fi(x) > 0)} .

Encode each set: A; — p; € RY for g = q(t).
V ={p1,...,pn}, N points in RY.
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Encode sets to points
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Encode sets to points
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-
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Encode sets to points

Let V = {Aqy,..., Ay} be a family of N semi-algebraic sets in RY,
each set with complexity at most t.

N
—
S

A = {x eRY: d(f(x)>0,.... fi(x) > 0)} .

Encode each set: A; — p; € RY for g = q(t).
V ={p1,...,pn}, N points in RY.
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Semi-algebraic relation

For V = {p1,....pn} C RY, the edge set E C (}) is semi-algebraic
if E can be described with a constant number of polynomial
equations and inequalities (each of bounded degree), and a
boolean formula ®.
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Semi-algebraic relation

For V ={p1,....,pn} C RY, the edge set E C (‘;) is semi-algebraic
if there exists a semi-algebraic set E* C R*9 with bounded
description complexity, such that for i7 < --- < iy

(Pirs s Pi) € E & (Piys s pi) € E* C RM.

(BB B
-
(V3]

Example: For k = 3 look at all triples (pj,, pi,, piy) in R39.

Call the pair (V, E) a semi-algebraic k-uniform hypergraph (with
bounded description complexity).
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V ={A;1,...,An}, N disks in the plane. E = {pairs of disks that
intersect}.

Andrew Suk Geometric Ramsey Theory



V = {A1,...,An}, N disks in the plane. E = {pairs of disks that

intersect}.
(%Y .14)
Coas
D
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V ={A;1,...,An}, N disks in the plane. E = {pairs of disks that
intersect}.
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V ={A;1,...,An}, N disks in the plane. E = {pairs of disks that
intersect}.

Ai = pi = (xi,¥i, i), Aj = pj = (X}, yj,rj). Ai and A; cross if and
only if

—x,-2 + 2x; X — XJ-2 —y,-2 + 2yiy; —yj2 =+ r,-2 + 2rirj + rj2 > 0.
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V ={A1,...,An}, N disks in the plane. E = { pairs of disks that

intersect}.
(%Y 1)
()
G C

(V, E) is semi-algebraic graph,
E*={(z1,...,26) €R®: f(z1,...,25) > 0}, where

F(z1,...,26) = —27 + 22124 — 23 — 23 + 22025 — 22 + 25 + 2232 + 2.

(pi,pj) € E < (pi,pj) € E™.
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More examples

Examples
Q@ V = {N circles in R3}
E = {pairs that are linked}.

@ V = {N hyperplanes in R in general position},
E = {d-tuples whose intersection point is above the
hyperplane x; = 0}.

X4=0
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Definition: Let R;*™ (n) be the minimum integer N such that any
N-vertex semi-algebraic k-uniform hypergraph H = (V/, E) contains
either a clique or an independent set of size n. R*™(n) < Ri(n).

Theorem (Alon, Pach, Pinchasi, Radoiti¢, Sharir 2005)

R5*™ (n) < n.

Applying Milnor-Thom Theorem and Cutting Lemma:

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

for k > 3, .
tk—1(can) < RE™(n) < te_1(n?).

Recall: for k >3, tx_1(cn?) < Ri(n) < tx(c'n).
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Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

for k > 3, .
tk_l(c2n) < R;eml(n) < tk_l(ncl).

Several applications...
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Problem (Matouek-Welzl 1992, Dujmovié¢-Langerman 2011,

Matousek-Elias 2012.)

Determine the minimum integer OSHy(n), such that any family of
at least OSHy(n) hyperplanes in RY in general position, must
contain n members such that every d-tuple intersects on one-side
of the hyperplane x4 = 0.

OSH,(n) = ©(n?), OSHy(n) < Ry(n) < tg(c'n).

V = {N hyperplanes},
E = {d-tuples that intersect above x4 = 0 hyperplane}.
New bound: OSHy(n) < R$™(n) < tg_1(n%)

<

Xd=0
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Combinatorial Problem

Ramsey number of 3-uniform hypergraphs.

2" < Ry(n) < 22",

Conjecture (Erdés)

22" < Rs(n)

Is there a geometric construction showing 22 < R3(n)?

Our Result: R§*™(n) < 2.
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Another Ramsey-type problem in geometry.

Given a point sequence P = py, po, ..., py C R? in general
position, x : (dil) — {+1,—1} (positive or negative orientation).

X is the order-type of P.
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Orientation: of a (d + 1)-tuples p1, pa, ..., pg+1 € R? in general
position.

Example: in R?’, P1, P2, P3, P4.
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Orientation: of a (d + 1)-tuples p1, pa, ..., pg+1 € R? in general
position.

Example: in R?’, P1, P2, P3, P4.

&

Andrew Suk Geometric Ramsey Theory



Orientation: of a (d + 1)-tuples p1, pa, ..., pg+1 € R? in general
position.

Example: in R3, p1, p2, p3, ps.
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Orientation: of a (d + 1)-tuples pi1, pa, ..., pg+1 € R? in general
position.

Example: in R?, p1, p2, p3, ps.

P Avz =e3

V2 V1

—- AV =e

p_L 2 2
V3

AVl =g

X({p1, P2, P3, pa}) = sgndet(A).
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Orientation: of a (d + 1)-tuples pi1, pa, ..., pg+1 € R? in general
position.

Example: in R?, p1, p2, p3, ps.

P Avs =e3
Vo V1
V3
AVl =g

Which side of the hyperplane h = (p1, ..., pg) the point pgi1 lies.
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Example: 2-dimensions, d +1 =3
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Example: 2-dimensions, d +1 =3
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Example: 3-dimensions, d +1 =14

R
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Example: 3-dimensions, d +1 =14

Py
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A point sequence P = py, ..., p, C R? is order-type homogeneous,
if every d + 1-tuple has the same orientation (i.e. all positive or all
negative).

Problem (Corodovil-Duchet 2000, Matou3ek-Elias 2012.)

Determine the minimum integer OTg4(n), such that any sequence
of OT4(n) points in RY in general position, contains an n-element
subsequence that is order-type homogeneous.
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A point sequence P = py, ..., p, C R? is order-type homogeneous,
if every d + 1-tuple has the same orientation (i.e. all positive or all
negative).

A point sequence that is order-type homogeneous forms the vertex
set of a convex polytope combinatorially equivalent to the cyclic
polytope in RY.
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A point sequence P = py, ..., p, C RY is order-type homogeneous,
if every d + 1-tuple has the same orientation (i.e. all positive or all
negative).

Theorem (McMullen 1962)

Among all d-dimensional convex polytopes with n vertices, the
cyclic polytope maximizes the number of faces of each dimension
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A point sequence P = py, ..., p, C R? is order-type homogeneous,
if every d + 1-tuple has the same orientation (i.e. all positive or all
negative).

Problem (Corodovil-Duchet 2000, Matou3ek-Elias 2012.)

Determine the minimum integer OTg4(n), such that any sequence
of OT4(n) points in RY in general position, contains an n-element
subsequence that is order-type homogeneous.
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1-dimension: P = py,...,py C R, order-type homogeneous subset

P < piy < < pi,
or

Pi > pip > - > Pi,
Erdds-Szkeres: OT1(n) = (n—1)?>+1
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2-dimensions: Order-type homogeneous subset: Every triple has a
clockwise orientation, or every triple has a clockwise orientation.

OT>,(n) is about points in convex position.

Erdés-Szkeres cups-caps Theorem: OT,(n) = 2°(")
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For d > 3
V = {N labeled points in RY in general position}
E = {(d 4 1)-tuples having a positive orientation}
o OTa(n) < Ray1(n) < ts1(O(n))
o OTy4(n) < R%Mi(n) < tg(n%), where ¢y is exponential in a

d+1
power of d.
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For d > 3

V = {N labeled points in R? in general position}
E = {(d 4 1)-tuples having a positive orientation}
o OTa(n) < Ray1(n) < ts1(O(n))

o OT4(n) < REM(n) < tq(n), where ¢4 is exponential in a
power of d.

Theorem (Suk 2013+)

For d > 2, we have

OT4(n) < t4(O(n))
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Lower bound: OT3(n) > 22°0" (Elias-Matousek 2012).

Theorem (Suk 2013+)
For d > 2, we have

OT4(n) < t4(O(n))

v

Corollary

OTs(n) = 22°°

v
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OTi1(n) = ©(n?) (Erdés-Szekeres 1935)

(]

(]

OTo(n) = 29" (Erdés-Szekeres 1935/1960)

OTs(n) = 22° (Elias-Matousek 2012, Suk 2013+)

(]

For d > 4, 22" < OT4(n) < t4(O(n)) (Elias-Matousek
2012, Suk 2013+)
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For d > 2, we have

OTy(n) < 20Ta-1(n),

Since OT(n) = 2200, OT;(n) < 22°”, OTa(n) < 22" ...

Theorem (Suk 2013+)

For d > 2, we have

OT4(n) < ta(O(n))
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For d > 2 and M = OTy_1(n), we have

OTy(n) < 28 MleeM,

Proof. Set N = 24d*MlogM ot p— p . py C RY. Find
subsequence g1, qo, ..., qr, and subset S, C P, such that for

@ For i < j, gj comes before g; in the original sequence.

G d & % % Y% - O @
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Ford > 2 and M = OT4_1(n), we have

OTd(n) < 24d2MIog IVI.

Proof. Set N = 24*MlogM ot p — p . py C RY. Find
subsequence g1, qo, ..., qr, and subset S, C P, such that for

o Every d-tuples (gi,,....qi,), 1 < b < ... < g, (Girs---, Giy» q)
same orientation for all g € {qj : ig <j < r}US,.

G % &% %% @
d
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Ford > 2 and M = OT4_1(n), we have

OTd(n) < 24d2MIog IVI.

Proof. Set N = 24*MlogM ot p — p . py C RY. Find
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d
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Ford > 2 and M = OT4_1(n), we have

OTd(n) < 24d2MIog IVI.

Proof. Set N = 24*MlogM ot p — p . py C RY. Find
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For d > 2 and M = OTy_1(n), we have

OTy(n) < 28 MleeM,

Proof. Set N = 24d*MlogM ot p— p . py C RY. Find
subsequence g1, qo, ..., qr, and subset S, C P, such that for

o|5|_W—r

G d & % % Y% - O @
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Start: a1, q2,...,4d—1 = P1, P2, -+, Pd—1 and
Sda—1=P\{p1,p2, ., Pd—1}

Inductive Step: Given g1, ...,q, and S, with the 3 properties, we
need to find qi, ..., gr, gr+1 and S,41 with the 3 properties.
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gra1 smallest indexed element in S,. Order is preserved.

G G G G G G - G @
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gra1 smallest indexed element in S,. Order is preserved.

G G G G G G - G @
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gra1 smallest indexed element in S,. Order is preserved.

G 9 4 % % %% - O Qre
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Every d-tuple in {q1, ..., qr+1} gives rise to a hyperplane.

G 9 4 % % %% - O Qre
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Every d-tuple in {q1, ..., g,+1} gives rise to a hyperplane.

G 9 4 % % % - O Qre1

Need the second property, Every d-tuples (qij,, ..., qi, ),
i <ih<..<iq4 (qi,-.. gi,,q) same orientation for all
ge{q ig<j<r+1}US/ 1.
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Every d-tuple in {q1,...,g,+1} gives rise to a hyperplane.

4% @ wR o
d
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Every d-tuple in {q1,...,g,+1} gives rise to a hyperplane.

%% o @ % B @)
d
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Every d-tuple in {q1,...,g,+1} gives rise to a hyperplane.

Q4 d, %'-'-Qr
d
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Every d-tuple in {q1,...,g,+1} gives rise to a hyperplane.

4% @ wR o
d
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Every d-tuple in {q1,...,g,+1} gives rise to a hyperplane.

oﬂ.q203q4q;

d
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Every d-tuple in {q1,...,g,+1} gives rise to a hyperplane.

oﬂ.q203q4q;

d
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Every d-tuple in {q1,...,g,+1} gives rise to a hyperplane.

oﬂ.q203q4q;

d

Gives rise to (,",) hyperplanes in R
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Hyperplane arrangement lemma: (dil) hyperplanes divides RY
into O(r®") cells (d-faces).
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Hyperplane arrangement lemma: (") hyperplanes divides R
into O(rdz) cells (d-faces).

(S —1)/rd?

(D
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Hyperplane arrangement lemma: (") hyperplanes divides R
into O(r®") cells (d-faces).

(S-Drrd?=g

(D

Now, every d-tuples (g, ..., qi,), 1 < f2 < ... < ig, (qiy,---» Giy» q)
same orientation for all g € {qj : ig <j < r+1}US5.41.
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Second condition satisfied.

qlqzos%%@
d
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Second condition satisfied.

qlqzos%%@
d
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Second condition satisfied.

qlqzos%%@
d
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Second condition satisfied.

qlqzogch@

d
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Second condition satisfied.

qlqzogch@

d
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Second condition satisfied.

qlqzogch@

d
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Final condition: |S, ;| > 1511
r

Recall: |S,| > — r, implies

).)dz

|Sr41| 2 —(r+1)

N
(r!)d
Hence we can construct the sequence g1, g2, ..., @r+1 and S,+1 with
the 3 desired properties.
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N = 24*MlogM for M = OT4_4(n),

S 24d2MIogl\/l y
>~ - 2M>1
[S2ml 2 (2M — 2)1)&

g1, 92, ..., gop is well defined.
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We have q1, g2, ..., gam, where M = OTy_1(n)

qZ.M
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We have g1, g2, ..., gop, where M = OTy_1(n)
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We have q1, g2, ..., gam, where M = OTy_1(n)
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We have g1, g2, ..., gop, where M = OTy4_1(n)
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We have q1, g2, ..., gam, where M = OTy_1(n)

Bm h

AN
T
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We have q1, g2, ..., gam, where M = OTy_1(n)

Bm h

AN
T
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We have g1, g2, ..., gop, where M = OTy4_1(n)

Assume M points from g, .., gops lies below the point gopy

Bm
©(%)
(P(f’g,)«/m« . /
% 7
%

OTy4_1(n) points in h. @ n points every d-tuple in h = R9~1 has
the same orientation.
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We have g1, q2, ..., gop, where M = OTy_1(n)

Assume M points from g, .., gops lies below the point gopy

OT4_1(n) points in h. @ n points every d-tuple in h = R971 has
the same orientation.
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We have g1, q2, ..., gop, where M = OTy_1(n)

Assume M points from g, .., gops lies below the point gopy

OT4_1(n) points in h. @ n points every d-tuple in h = R971 has
the same orientation.
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We have q1, g2, ..., gam, where M = OTy_1(n)

Assume M points from q1, .., gou lies below the point gop

%bm

41,92, ---,qn-
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We have q1, g2, ..., gam, where M = OTy_1(n)

Assume M points from g, .., gops lies below the point gopy

Q' U gum: Every d + 1 tuple with gop has the same orientation.
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G % G d2m
o
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q, 05---- 4 Gau
o
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(B o
O1
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+ On
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O1

Every d + 1-tuple among these points have the same orientation.
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Close the gap on OTy(n) for d > 4.
o OTy(n) = ©(n?) (Erdds-Szekeres 1935)

o OTy(n) = 2°(" (Erdés-Szekeres 1935/1960)
o OT3(n) = 22°" (Elias-Matousek 2012, Suk 2013+)

o For d > 4, 22" < OT4(n) < t4(O(n)) (Elias-Matousek
2012, Suk 2013+)
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Thank youl!
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