Geometric Ramsey Theory

Andrew Suk

May 21, 2013

Introduction

For k-uniform hypergraphs.

Definition

We define the Ramsey number $R_k(n)$ to be the minimum integer N such that any N-vertex k-uniform hypergraph H contains either a clique or an independent set of size n.

Theorem (Ramsey 1930)

For all k, n, the Ramsey number $R_k(n)$ is finite.

Estimate $R_k(n)$, k fixed and $n \to \infty$.

Known estimates

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$2^{n/2} \le R_2(n) \le 2^{2n}.$$

Theorem (Erdős-Rado 1952, Erdős-Hajnal 1960's)

$$2^{cn^2} \leq R_3(n) \leq 2^{2^{c'n}}$$
.

$$t_{k-1}(cn^2) \le R_k(n) \le t_k(c'n).$$

Tower function $t_i(x)$ is given by $t_1(x) = x$ and $t_{i+1}(x) = 2^{t_i(x)}$.

Combinatorial Problem

$$2^{cn^2} \le R_3(n) \le 2^{2^{c'n}}.$$

Problem

Close the gap on $R_3(n)$

Conjecture (Erdős, \$500 problem)

$$2^{2^{cn}} \leq R_3(n)$$

Erdős-Hajnal Stepping Up Lemma: $x < R_k(n)$, then $2^x \lesssim R_{k+1}(n)$ for $k \geq 3$

Would imply
$$R_4(n) = 2^{2^{2^{\Theta(n)}}}$$
, and $R_k(n) = t_k(\Theta(n))$.

Is there a geometric construction showing $2^{2^{cn}} \le R_3(n)$?

```
V = \{N \text{ points in the plane}\},\ E = \{\text{triples having a clockwise orientation}\}.
```


 $V = \{N \text{ points in the plane}\},\ E = \{\text{triples having a clockwise orientation}\}.$

 $V = \{N \text{ points in the plane}\},\ E = \{\text{triples having a clockwise orientation}\}.$

 $V = \{N \text{ points in the plane}\},\ E = \{\text{triples having a clockwise orientation}\}.$


```
V = \{N \text{ points in the plane}\},

E = \{\text{triples having a clockwise orientation}\}.

Many graphs and hypergraphs defined geometrically.
```

 $V = \{N \text{ tubes of length } I \text{ and radius } 1 \text{ in } \mathbb{R}^d\}$ $E = \{\text{pairs that intersect}\}.$

Semi-algebraic hypergraphs.

semi-algebraic sets (Tarski cell)

Definition

A set $A \subset \mathbb{R}^d$ is called *semi-algebraic* if there are polynomials $f_1, f_2, ..., f_r \in \mathbb{R}[x_1, ..., x_d]$ and a Boolean formula $\Phi(X_1, X_2, ..., X_r)$, where $X_1, ..., X_r$ are variables attaining values "true" and "false", such that

$$A = \left\{ x \in \mathbb{R}^d : \Phi(f_1(x) \ge 0, ..., f_r(x) \ge 0) \right\}.$$

 Φ involves unions, intersections, and complementations. Assume Quantifier-free (Tarski's Theorem).

A has complexity at most t if $d, r \leq t$ and each $deg(f_i) \leq t$.

Examples: hyperplanes, balls, boxes, tubes, etc. in \mathbb{R}^d .

Let $V = \{A_1, ..., A_N\}$ be a family of N semi-algebraic sets in \mathbb{R}^d , each set with complexity at most t.

$$A_i = \left\{ x \in \mathbb{R}^d : \Phi(f_1(x) \ge 0, ..., f_r(x) \ge 0) \right\}.$$

$$V = \{p_1, ..., p_N\}, N \text{ points in } \mathbb{R}^q.$$

Let $V = \{A_1, ..., A_N\}$ be a family of N semi-algebraic sets in \mathbb{R}^d , each set with complexity at most t.

$$A_i = \left\{ x \in \mathbb{R}^d : \Phi(f_1(x) \ge 0, ..., f_r(x) \ge 0) \right\}.$$

$$V = \{p_1, ..., p_N\}, N \text{ points in } \mathbb{R}^q.$$

Let $V = \{A_1, ..., A_N\}$ be a family of N semi-algebraic sets in \mathbb{R}^d , each set with complexity at most t.

$$A_i = \left\{ x \in \mathbb{R}^d : \Phi(f_1(x) \ge 0, ..., f_r(x) \ge 0) \right\}.$$

$$V = \{p_1, ..., p_N\}$$
, N points in \mathbb{R}^q .

Let $V = \{A_1, ..., A_N\}$ be a family of N semi-algebraic sets in \mathbb{R}^d , each set with complexity at most t.

$$A_i = \left\{ x \in \mathbb{R}^d : \Phi(f_1(x) \ge 0, ..., f_r(x) \ge 0) \right\}.$$

Encode each set: $A_i \rightarrow p_i \in \mathbb{R}^q$ for q = q(t).

 $V = \{p_1, ..., p_N\}$, N points in \mathbb{R}^q .

Let $V = \{A_1, ..., A_N\}$ be a family of N semi-algebraic sets in \mathbb{R}^d , each set with complexity at most t.

$$A_i = \left\{ x \in \mathbb{R}^d : \Phi(f_1(x) \ge 0, ..., f_r(x) \ge 0) \right\}.$$

$$V = \{p_1, ..., p_N\}$$
, N points in \mathbb{R}^q .

Semi-algebraic relation

For $V = \{p_1, ..., p_N\} \subset \mathbb{R}^q$, the edge set $E \subset \binom{V}{k}$ is semi-algebraic if E can be described with a constant number of polynomial equations and inequalities (each of bounded degree), and a boolean formula Φ .

Semi-algebraic relation

For $V = \{p_1, ..., p_N\} \subset \mathbb{R}^q$, the edge set $E \subset \binom{V}{k}$ is semi-algebraic if there exists a semi-algebraic set $E^* \subset \mathbb{R}^{kq}$ with bounded description complexity, such that for $i_1 < \cdots < i_k$

$$(p_{i_1},...,p_{i_k}) \in E \Leftrightarrow (p_{i_1},...,p_{i_k}) \in E^* \subset \mathbb{R}^{kq}.$$

Example: For k = 3 look at all triples $(p_{i_1}, p_{i_2}, p_{i_3})$ in \mathbb{R}^{3q} .

Call the pair (V, E) a semi-algebraic k-uniform hypergraph (with bounded description complexity).

 $A_i \rightarrow p_i = (x_i, y_i, r_i), A_j \rightarrow p_j = (x_j, y_j, r_j).$ A_i and A_j cross if and only if

$$-x_i^2 + 2x_ix_j - x_j^2 - y_i^2 + 2y_iy_j - y_j^2 + r_i^2 + 2r_ir_j + r_j^2 \ge 0.$$

(V, E) is semi-algebraic graph,

$$E^* = \{(z_1,...,z_6) \in \mathbb{R}^6 : f(z_1,...,z_6) \ge 0\}$$
, where

$$f(z_1,...,z_6) = -z_1^2 + 2z_1z_4 - z_4^2 - z_2^2 + 2z_2z_5 - z_5^2 + z_3^2 + 2z_3z_6 + z_6^2.$$

$$(p_i, p_i) \in E \Leftrightarrow (p_i, p_i) \in E^*.$$

More examples

Examples

- $V = \{N \text{ circles in } \mathbb{R}^3\}$ $E = \{\text{pairs that are linked}\}.$
- ② $V = \{N \text{ hyperplanes in } \mathbb{R}^d \text{ in general position}\},$ $E = \{d \text{-tuples whose intersection point is above the hyperplane } x_d = 0\}.$

Results

Definition: Let $R_k^{semi}(n)$ be the minimum integer N such that any N-vertex semi-algebraic k-uniform hypergraph H = (V, E) contains either a clique or an independent set of size n. $R_k^{semi}(n) \leq R_k(n)$.

Theorem (Alon, Pach, Pinchasi, Radoičić, Sharir 2005)

$$R_2^{semi}(n) \leq n^{c_1}$$
.

Applying Milnor-Thom Theorem and Cutting Lemma:

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

for $k \geq 3$,

$$t_{k-1}(c_2n) \leq R_k^{semi}(n) \leq t_{k-1}(n^{c_1}).$$

Recall: for $k \ge 3$, $t_{k-1}(cn^2) \le R_k(n) \le t_k(c'n)$.

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

for $k \geq 3$,

$$t_{k-1}(c_2n) \leq R_k^{semi}(n) \leq t_{k-1}(n^{c_1}).$$

Several applications...

Problem (Matoušek-Welzl 1992, Dujmović-Langerman 2011, Matoušek-Eliáš 2012.)

Determine the minimum integer $OSH_d(n)$, such that any family of at least $OSH_d(n)$ hyperplanes in \mathbb{R}^d in general position, must contain n members such that every d-tuple intersects on one-side of the hyperplane $x_d=0$.

$$OSH_2(n) = \Theta(n^2), \qquad OSH_d(n) \le R_d(n) \le t_d(c'n).$$

 $V = \{N \text{ hyperplanes}\},\$

 $E = \{d$ -tuples that intersect above $x_d = 0$ hyperplane $\}$.

New bound: $OSH_d(n) \leq R_d^{semi}(n) \leq t_{d-1}(n^{c_1})$

Combinatorial Problem

Ramsey number of 3-uniform hypergraphs.

$$2^{cn^2} \leq R_3(n) \leq 2^{2^{c'n}}.$$

Conjecture (Erdős)

$$2^{2^{cn}} \leq R_3(n)$$

Is there a geometric construction showing $2^{2^{cn}} \leq R_3(n)$?

Our Result: $R_3^{semi}(n) \leq 2^{n^{c_1}}$.

Another Ramsey-type problem in geometry.

Given a point sequence $P = p_1, p_2,, p_N \subset \mathbb{R}^d$ in general position, $\chi: \binom{P}{d+1} \to \{+1, -1\}$ (positive or negative orientation).

 χ is the *order-type* of P.

Example: in \mathbb{R}^3 , p_1, p_2, p_3, p_4 .

Example: in \mathbb{R}^3 , p_1, p_2, p_3, p_4 .

Example: in \mathbb{R}^{3} , $p_{1}, p_{2}, p_{3}, p_{4}$.

Example: in \mathbb{R}^3 , p_1, p_2, p_3, p_4 .

$$\chi(\{p_1, p_2, p_3, p_4\}) = \operatorname{sgn} \det(A).$$

Example: in \mathbb{R}^3 , p_1, p_2, p_3, p_4 .

Which side of the hyperplane $h = (p_1, ..., p_d)$ the point p_{d+1} lies.

Example: 2-dimensions, d + 1 = 3

Example: 2-dimensions, d + 1 = 3

Example: 3-dimensions, d + 1 = 4

Example: 3-dimensions, d + 1 = 4

A point sequence $P = p_1, ..., p_n \subset \mathbb{R}^d$ is order-type homogeneous, if every d+1-tuple has the same orientation (i.e. all positive or all negative).

Problem (Corodovil-Duchet 2000, Matoušek-Eliáš 2012.)

Determine the minimum integer $OT_d(n)$, such that any sequence of $OT_d(n)$ points in \mathbb{R}^d in general position, contains an n-element subsequence that is order-type homogeneous.

A point sequence $P=p_1,...,p_n\subset\mathbb{R}^d$ is order-type homogeneous, if every d+1-tuple has the same orientation (i.e. all positive or all negative).

Fact

A point sequence that is order-type homogeneous forms the vertex set of a convex polytope combinatorially equivalent to the cyclic polytope in \mathbb{R}^d .

A point sequence $P=p_1,...,p_n\subset\mathbb{R}^d$ is order-type homogeneous, if every d+1-tuple has the same orientation (i.e. all positive or all negative).

Theorem (McMullen 1962)

Among all d-dimensional convex polytopes with n vertices, the cyclic polytope maximizes the number of faces of each dimension

A point sequence $P = p_1, ..., p_n \subset \mathbb{R}^d$ is order-type homogeneous, if every d+1-tuple has the same orientation (i.e. all positive or all negative).

Problem (Corodovil-Duchet 2000, Matoušek-Eliáš 2012.)

Determine the minimum integer $OT_d(n)$, such that any sequence of $OT_d(n)$ points in \mathbb{R}^d in general position, contains an n-element subsequence that is order-type homogeneous.

1-dimension: $P = p_1, ..., p_N \subset \mathbb{R}$, order-type homogeneous subset

$$p_{i_1} < p_{i_2} < \cdots < p_{i_n}$$

or

$$p_{i_1} > p_{i_2} > \cdots > p_{i_n}$$

Erdős-Szkeres: $OT_1(n) = (n-1)^2 + 1$

2-dimensions: Order-type homogeneous subset: Every triple has a clockwise orientation, or every triple has a clockwise orientation.

 $OT_2(n)$ is about points in convex position.

Erdős-Szkeres cups-caps Theorem: $OT_2(n) = 2^{\Theta(n)}$

For $d \ge 3$

 $V = \{N \text{ labeled points in } \mathbb{R}^d \text{ in general position} \}$ $E = \{(d+1)\text{-tuples having a positive orientation} \}$

- $OT_d(n) \le R_{d+1}(n) \le t_{d+1}(O(n))$
- $OT_d(n) \le R_{d+1}^{semi}(n) \le t_d(n^{c_d})$, where c_d is exponential in a power of d.

For $d \geq 3$

 $V = \{N \text{ labeled points in } \mathbb{R}^d \text{ in general position} \}$ $E = \{(d+1)\text{-tuples having a positive orientation} \}$

- $OT_d(n) \le R_{d+1}(n) \le t_{d+1}(O(n))$
- $OT_d(n) \le R_{d+1}^{semi}(n) \le t_d(n^{c_d})$, where c_d is exponential in a power of d.

Theorem (Suk 2013+)

For d > 2, we have

$$OT_d(n) \leq t_d(O(n))$$

Lower bound: $OT_3(n) \ge 2^{2^{\Omega(n)}}$ (Elias-Matousek 2012).

Theorem (Suk 2013+)

For $d \geq 2$, we have

$$OT_d(n) \leq t_d(O(n))$$

Corollary

$$OT_3(n) = 2^{2^{\Theta(n)}}$$

- $OT_1(n) = \Theta(n^2)$ (Erdős-Szekeres 1935)
- $OT_2(n) = 2^{\Theta(n)}$ (Erdős-Szekeres 1935/1960)
- $OT_3(n) = 2^{2^{\Theta(n)}}$ (Elias-Matousek 2012, Suk 2013+)
- For $d \ge 4$, $2^{2^{\Omega(n)}} \le OT_d(n) \le t_d(O(n))$ (Elias-Matousek 2012, Suk 2013+)

For d > 2, we have

$$OT_d(n) \lesssim 2^{OT_{d-1}(n)}$$
.

Since
$$OT_2(n) = 2^{\Theta(n)}$$
, $OT_3(n) \le 2^{2^{O(n)}}$, $OT_4(n) \le 2^{2^{2^{O(n)}}}$,.....

Theorem (Suk 2013+)

For $d \geq 2$, we have

$$OT_d(n) \leq t_d(O(n))$$

For $d \ge 2$ and $M = OT_{d-1}(n)$, we have

$$OT_d(n) < 2^{4d^2M\log M}.$$

Proof. Set $N = 2^{4d^2M\log M}$, let $P = p_1, ..., p_N \subset \mathbb{R}^d$. Find subsequence $q_1, q_2, ..., q_r$, and subset $S_r \subset P$, such that for

• For i < j, q_i comes before q_j in the original sequence.

$$q_1$$
 q_2 q_3 q_4 q_5 q_6 q_r S_r

For $d \ge 2$ and $M = OT_{d-1}(n)$, we have

$$OT_d(n) < 2^{4d^2M\log M}.$$

Proof. Set $N = 2^{4d^2M \log M}$, let $P = p_1, ..., p_N \subset \mathbb{R}^d$. Find subsequence $q_1, q_2, ..., q_r$, and subset $S_r \subset P$, such that for

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \dots \quad q_r$$

For $d \ge 2$ and $M = OT_{d-1}(n)$, we have

$$OT_d(n) < 2^{4d^2M\log M}.$$

Proof. Set $N = 2^{4d^2M \log M}$, let $P = p_1, ..., p_N \subset \mathbb{R}^d$. Find subsequence $q_1, q_2, ..., q_r$, and subset $S_r \subset P$, such that for

$$(q_1 \quad q_2 \quad q_3) (q_4) q_5 \quad q_6 \quad \dots \quad q_r$$

For $d \ge 2$ and $M = OT_{d-1}(n)$, we have

$$OT_d(n) < 2^{4d^2M\log M}.$$

Proof. Set $N = 2^{4d^2M \log M}$, let $P = p_1, ..., p_N \subset \mathbb{R}^d$. Find subsequence $q_1, q_2, ..., q_r$, and subset $S_r \subset P$, such that for

$$(q_1 \quad q_2 \quad q_3) \quad q_4 \quad q_5) \quad q_6 \quad \dots \quad q_r$$

For $d \ge 2$ and $M = OT_{d-1}(n)$, we have

$$OT_d(n) < 2^{4d^2M\log M}.$$

Proof. Set $N = 2^{4d^2M \log M}$, let $P = p_1, ..., p_N \subset \mathbb{R}^d$. Find subsequence $q_1, q_2, ..., q_r$, and subset $S_r \subset P$, such that for

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \dots \quad q_r$$

For $d \ge 2$ and $M = OT_{d-1}(n)$, we have

$$OT_d(n) < 2^{4d^2M\log M}.$$

Proof. Set $N = 2^{4d^2M \log M}$, let $P = p_1, ..., p_N \subset \mathbb{R}^d$. Find subsequence $q_1, q_2, ..., q_r$, and subset $S_r \subset P$, such that for

$$(q_1 \quad q_2 \quad q_3) \quad q_4 \quad q_5 \quad q_6 \quad \dots \quad (q_r)$$

For $d \ge 2$ and $M = OT_{d-1}(n)$, we have

$$OT_d(n) < 2^{4d^2M\log M}.$$

Proof. Set $N = 2^{4d^2M \log M}$, let $P = p_1, ..., p_N \subset \mathbb{R}^d$. Find subsequence $q_1, q_2, ..., q_r$, and subset $S_r \subset P$, such that for

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \dots \quad q_r$$

For $d \ge 2$ and $M = OT_{d-1}(n)$, we have

$$OT_d(n) < 2^{4d^2M\log M}.$$

Proof. Set $N = 2^{4d^2M \log M}$, let $P = p_1, ..., p_N \subset \mathbb{R}^d$. Find subsequence $q_1, q_2, ..., q_r$, and subset $S_r \subset P$, such that for

•
$$|S_r| \ge \frac{N}{((r-1)!)^{d^2}} - r$$
.

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \dots \quad q_r$$

Start:
$$q_1, q_2, ..., q_{d-1} = p_1, p_2, ..., p_{d-1}$$
 and $S_{d-1} = P \setminus \{p_1, p_2, ..., p_{d-1}\}$

Inductive Step: Given $q_1, ..., q_r$ and S_r with the 3 properties, we need to find $q_1, ..., q_r, q_{r+1}$ and S_{r+1} with the 3 properties.

 q_{r+1} smallest indexed element in S_r . Order is preserved.

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \dots \quad q_r \qquad \qquad S_r$$

 q_{r+1} smallest indexed element in S_r . Order is preserved.

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \dots \quad q_r \qquad \bullet \qquad S_r$$

 q_{r+1} smallest indexed element in S_r . Order is preserved.

$$q_{l} \ \ q_{2} \ \ q_{3} \ \ q_{4} \ \ q_{5} \ \ q_{6} \ \ \ \ q_{r} \ q_{r+1} \ \ \overbrace{S_{r} - q_{r+1}}$$

$$q_l \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \dots \quad q_r \quad q_{r+1} \qquad \overbrace{S_r - q_{r+1}}$$

$$q_{l} \quad q_{2} \quad q_{3} \quad q_{4} \quad q_{5} \quad q_{6} \quad \cdots \quad q_{r} \quad q_{r+1} \qquad \overbrace{S_{r} - q_{r+1}}$$

Need the second property, Every d-tuples $(q_{i_1},...,q_{i_d})$, $i_1 < i_2 < ... < i_d$, $(q_{i_1},...,q_{i_d},q)$ same orientation for all $q \in \{q_j: i_d < j \leq r+1\} \cup S_{r+1}$.

$$q_1$$
 q_2 q_3 q_4 q_5 q_6 q_r q_{r+1} $S_r - q_{r+1}$

$$q_1$$
 q_2 q_3 q_4 q_5 q_6 q_r q_{r+1} $S_r - q_{r+1}$

$$q_1$$
 q_2 q_3 q_4 q_5 q_6 q_r q_{r+1} q_{r+1}

$$q_1$$
 q_2 q_3 q_4 q_5 q_6 q_r q_{r+1} q_{r+1}

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad \overbrace{\begin{matrix} 0_6 & \cdots & q_r & q_{r+1} \end{matrix}}_{d}$$

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad \overbrace{q_6 \quad \cdots \quad q_r \quad q_{r+1}}^{\qquad \qquad \qquad \qquad \qquad } \underbrace{S_r \quad q_{r+1}}^{\qquad \qquad \qquad \qquad \qquad }$$

Gives rise to $\binom{r}{d-1}$ hyperplanes in \mathbb{R}^d

Hyperplane arrangement lemma: $\binom{r}{d-1}$ hyperplanes divides \mathbb{R}^d into $O(r^{d^2})$ cells (*d*-faces).

Hyperplane arrangement lemma: $\binom{r}{d-1}$ hyperplanes divides \mathbb{R}^d into $O(r^{d^2})$ cells (*d*-faces).

Hyperplane arrangement lemma: $\binom{r}{d-1}$ hyperplanes divides \mathbb{R}^d into $O(r^{d^2})$ cells (*d*-faces).

Now, every *d*-tuples $(q_{i_1},...,q_{i_d})$, $i_1 < i_2 < ... < i_d$, $(q_{i_1},...,q_{i_d},q)$ same orientation for all $q \in \{q_j : i_d < j \le r+1\} \cup S_{r+1}$.

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \cdots \quad q_r \quad q_{r+1}$$

$$q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad \cdots \quad q_r \quad q_{r+1}$$

Final condition: $|S_{r+1}| \ge \frac{|S_r|-1}{r^{d^2}}$.

Recall: $|S_r| \ge \frac{N}{((r-1)!)^{d^2}} - r$, implies

$$|S_{r+1}| \geq \frac{N}{(r!)^{d^2}} - (r+1)$$

Hence we can construct the sequence $q_1, q_2, ..., q_{r+1}$ and S_{r+1} with the 3 desired properties.

$$N=2^{4d^2M\log M}$$
, for $M=OT_{d-1}(n)$, $|S_{2M}|\geq rac{2^{4d^2M\log M}}{((2M-2)!)^{d^2}}-2M>1$

 $q_1, q_2, ..., q_{2M}$ is well defined.

We have
$$q_1, q_2, ..., q_{2M}$$
, where $M = OT_{d-1}(n)$

$$q_{2M}$$

Assume M points from $q_1,..,q_{2M}$ lies below the point q_{2M}

 $OT_{d-1}(n)$ points in h. Q' n points every d-tuple in $h = \mathbb{R}^{d-1}$ has the same orientation.

Assume M points from $q_1,..,q_{2M}$ lies below the point q_{2M}

 $OT_{d-1}(n)$ points in h. Q' n points every d-tuple in $h = \mathbb{R}^{d-1}$ has the same orientation.

Assume M points from $q_1,..,q_{2M}$ lies below the point q_{2M}

 $OT_{d-1}(n)$ points in h. Q' n points every d-tuple in $h = \mathbb{R}^{d-1}$ has the same orientation.

Assume M points from $q_1,..,q_{2M}$ lies below the point q_{2M}

 $q_1, q_2, ..., q_n$.

Assume M points from $q_1,..,q_{2M}$ lies below the point q_{2M}

 $Q' \cup q_M$: Every d+1 tuple with q_{2M} has the same orientation.

$$q_1$$
 q_2 q_3 q_4 q_5 q_6 q_n q_{2M} Q'

$$q_1$$
 q_2 q_3 q_4 q_5 q_6 q_n q_{2M} Q'

Every d + 1-tuple among these points have the same orientation.

Close the gap on $OT_d(n)$ for $d \ge 4$.

- $OT_1(n) = \Theta(n^2)$ (Erdős-Szekeres 1935)
- $OT_2(n) = 2^{\Theta(n)}$ (Erdős-Szekeres 1935/1960)
- $OT_3(n) = 2^{2^{\Theta(n)}}$ (Elias-Matousek 2012, Suk 2013+)
- For $d \geq$ 4, $2^{2^{\Omega(n)}} \leq OT_d(n) \leq t_d(O(n))$ (Elias-Matousek 2012, Suk 2013+)

Thank you!