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hence u; € cone(A;). Above we have derived Z;zl @j(u;) = 0, and so by
(8.1) we get u; = up = --- = u,. Hence the common value of all the U
belongs to (1;_, cone(4;).

It remains to check that u; # 0. Since we assume 0 & conv(A), the only
nonnegative linear combination of points of A equal to 0 is the trivial one,
with all coefficients 0. On the other hand, since not all the a; are 0, at least
one u; is expressed as a nontrivial linear combination of points of A. This
proves Proposition 8.3.2 and Tverberg’s theorem as well. O

The colored Tverberg theorem. If we have 9 points in the plane, 3 of
them red, 3 blue, and 3 white, it turns out that we can always partition them
into 3 triples in such a way that each triple has one red, one blue, and one
white point, and the 3 triangles determined by the triples have a nonempty
Intersection.

The colored Tverberg theorem is a generalization of this statement for ar-
bitrary d and r. We will need it in Section 9.2, for a result about many
simplices with a common point. In that application, the colored version is
essential (and Tverberg’s theorem alone is not sufficient).

8.3.3 Theorem (Colored Tverberg theorem). For any integersr,d > 2
there exists an integer t such that given any t(d+1)-point set Y C R? par-
titioned into d+1 color classes Yi,...,Y4+1 with t points each, there ex-
ist v pairwise disjoint sets Ai,...,A, such that each A; contains exactly
one point of each Y;, j = 1,2,...,d+1 (that is, the A; are rainbow), and

N;—, conv(A;) # 0.

Let To1(d, ) denote the smallest ¢ for which the conclusion of the theorem
holds. It is known that T, (2,7) = r for all r. It is possible that T (d,r) =7
for all d and r, but only weaker bounds have been proved. The strongest
known result guarantees that 7. (d, r) < 2r—1 whenever r is a prime power.

Recall that in Tverberg’s theorem, if we need only the existence of T'(d, ),
rather than the precise value, several simple arguments are available. In con-
trast, for the colored version, even if we want only the existence of T, (d, ),
there is essentially only one type of proof, which is not easy and which uses
topological methods. Since such methods are not considered in this book, we
have to omit a proof of the colored Tverberg theorem.

Bibliography and remarks. Tverberg’s theorem was conjectured
by Birch and proved by Tverberg (really!) [Tve66]. His original proof is
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a € R? js contained in more than dn®~! hyperplanes of H. Consequently, at
most O(n?) X-simplices have a on their boundary.

Proof. For each d-tuple S whose hyperplane contains a, we choose an
inclusion-minimal set K(S) C S whose affine hull contains a. We claim that
if |K(S1)| = |K(S2)| = k, then either K(S;) = K(S2) or K(S;) and K(S3)
share at most k—2 points.

Indeed, if K(S;) = {z1,...,Zk-1,2} and K(S2) = {z1,. ., Zk—1,Yk}
Tk # Yk, then the affine hulls of K(.57) and K(S3) are distinct, for otherwise,
we would have k+1 points in a common (k—1)-flat, contradicting the gencral
position of X. But then the affine hulls intersect in the (k—2)-flat generated
by x1,...,zx—1 and containing a, and K(S;) and K(S2) are not inclusion-
minimal.

Therefore, the first k—1 points of K(S) determine the last one uniquely,
and the number of distinct sets of the form K(5) of cardinality k is at most
n*~!. The number of hyperplanes determined by X and containing a given
k-point set K C X is at most n?~* and the lemma follows by sumnming
over k. O

Bibliography and remarks. The planar version of the first selec-
tion lemma, with the best possible constant %, was proved by Boros
and Fiiredi [BF84]. A generalization to an arbitrary dimension, with
the first of the two proofs given above, was found by Barany [Bar82].
The idea of the proof of Lemma 9.1.2 was communicated to mc by
Janos Pach.

Boros and Fiiredi [BF84] actually showed that any centerpoint of
X works; that is, it is contained in at least %(g) X-triangles. Wag-
ner and Welzl (private communication) observed that a centerpoint
works in every fixed dimension, becing common to at lcast cg4 ( d:fl)
X-simplices. This follows from known results on the face numbers of
convex polytopes using the Gale transform, and it provides yet another
proof of the first selection lemma, yielding a slightly better value of
the constant ¢4 than that provided by Barany’s proof. Moreover, for
a centrally symmetric point set X this method implies that the origin
is contained in the largest possible number of X-simplices.

As for lower bounds, it is known that no n-point X C R in gen-
eral position has a point common to more than 513( dil) X -simplices
[Bar82]. It seems that suitable sets might provide stronger lower
bounds, but no results in this direction are known.

9.2 The Second Selection Lemma

In this section we continue using the term X-simplex in the sense of Sec-
tion 9.1; that is, an X-simplex is the convex hull of a (d+1)-point subset
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of X. In that section we saw that if X is a set in R® and we consider all the
X-simplices, then at least a fixed fraction of them have a point in common.

What if we do not have all, but many X-simplices, some a-fraction of all?
It turns out that still many of them must have a point in common, as stated
in the second selection lemma below.

9.2.1 Theorem (Second selection lemma). Let X be an n-point set
in R? and let F be a family of a( dzl) X-simplices, where a € (0,1] is a
parameter. Then there exists a point contained in at least

ca’e "
d+1

X -simplices of F, where ¢ = c¢(d) > 0 and s4 are constants.

This result is already interesting for a fixed. But for the application that
niotivated the discovery of the second selection lemma, namely, trying to
bound the number of k-sets (see Chapter 11), the dependence of the bound
on « is important, and it would be nice to determine the best possible values
of the exponent sg.

For d =1 it is not too difficult to obtain an asymptotically sharp bound
(see Exercise 1). For d = 2 the best known bound (probably still not
sharp) is as follows: If |F| = n3~%, then there is a point contained in at
least Q(n3~3/log® n) X-triangles of F. In the parameterization as in The-
orem 9.2.1, this means that sy can be taken arbitrarily close to 3, provided
that a is sufficiently small, say o < n~? for some § > 0. For higher dimen-
sions, the best known proof gives sq ~ (4d+1)¢*1,

Hypergraphs. It is convenient to formulate some of the subsequent con-
siderations in the language of hypergraphs. Hypergraphs are a generalization
of graphs where edges can have more than 2 points (from another point of
view, a hypergraph is synonymous with a set system). A hypergraph is a pair
H = (V,E), where V is the vertex set and FE C 2V is a system of subsets of
V, the edge set. A k-uniform hypergraph has all edges of size k (so a graph is
a 2-uniform hypergraph). A k-partite hypergraph is one where the vertex set
can be partitioned into k subsets V7, Vs, ..., Vi, the classes, so that each edge
contains at most one point from each V;. The notions of subhypergraph and
isomorphism are defined analogously to these for graphs. A subhypergraph
is obtained by deleting some vertices and some edges (all edges containing
the deleted vertices, but possibly more). An isomorphism is a bijection of the
vertex sets that maps edges to edges in both directions (a renaming of the
vertices).

Proof of the second selection lemma. The proof is somewhat similar
to the second proof of the first selection lemma (Theorem 9.1.1). We again
use the fractional Helly theorem. We need to show that many (d+1)-tuples
of X-simplices of F are good (have nonempty intersections).
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We can view F as a (d+1)-uniform hypergraph. That is, we regard X as
the vertex set and each X-simplex corresponds to an edge, i.e., a subset of X
of size d+1. This hypergraph captures the “combinatorial typc” of the family
F, and a specific placement of the points of X in R® then gives a concrete
“geometric realization” of F.

First, let us concentrate on the simpler task of exhibiting at least one good
(d+1)-tuple; even this seems quite nontrivial. Why cannot we proceed as in
the second proof of the first sclection lemma? Let us give a concrete example
with d = 2. Following that proof, we would consider 9 points in R?, and
Tverberg’s theorem would provide a partition into triples with intersecting
convex hulls:

a b

But it can easily happen that one of these triples, say {a, b, c}, is not an edge
of our hypergraph. Tverberg’s theorem gives us no additional information on
which triples appear in the partition, and so this argument would guarantee
a good triple only if all the triples on the considered 9 points were contained
in F. Unfortunately, a 3-uniform hypergraph on n vertices can contain more
than half of all possible ('g) triples without containing all triples on some 9
points (even on 4 points). This is a “higher-dimensional” version of the fact -
that the complete bipartite graph on 5 + % vertices has about %nz edges
without containing a triangle.

Hypergraphs with many edges need not contain complete hypergraphs,
but they have to contain complete multipartite hypergraphs. For example, a
graph on n vertices with significantly more than n3/2 edges contains K 2,
the complete bipartite graph on 2 + 2 vertices (see Section 4.5). Concerning
hypergraphs, let K9t1(¢) denote the complete (d+1)-partite (d+1)-uniform
hypergraph with ¢ vertices in each of its d+1 vertex classes. The illustration
shows a K3(4); only three edges are drawn as a sample, although of course,
all triples connecting vertices at different levels are present.

If t is a constant and we have a (d+1)-uniform hypergraph on n vertices
with sufficiently many edges, then it has to contain a copy of K4t1(t) as a
subhypergraph. We do not formulate this result precisely, since we will need
a stronger one later.
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In geometric language, given a family F of sufficiently many X-simplices,
we can color some t points of X red, some other ¢ points blue,..., t points
by color (d+1) in such a way that all the rainbow X-simplices on the (d+1)t
colored points are present in F. And in such a situation, if ¢ is a sufficiently
large constant, the colored Tverberg theorem (Theorem 8.3.3) with r = d+1
claims that we can find a (d+1)-tuple of vertex-disjoint rainbow X-simplices
whose convex hulls intersect, and so there is a good (d+1)-tuple! In fact, these
are the considerations that led to the formulation of the colored Tverberg
theorem.

For the fractional Helly theorem, we need not only one but many good
(d+1)-tuples. We use an appropriate stronger hypergraph result, saying that
if a hypergraph has enough edges, then it contains many copies of K+1(¢):

9.2.2 Theorem (The Erd6s—Simonovits theorem). Let d andt be pos-
itive integers. Let H be a (d+1)-uniform hypergraph on n vertices and with

a( d?—l) edges, where o > Cn~!/ t* for a certain sufficiently large constant C.
Then ‘H contains at least i
catt pld+1)e

copies of K4t1(t), where ¢ = c(d,t) > 0 is a constant.

For completeness, a proof is given at the end of this section.

Note that in particular, the theorem implies that a (d+1)-uniform hy-
pergraph having at least a constant fraction of all possible edges contains at
least a constant fraction of all possible copies of K4t1(¢).

We can now finish the proof of the second selection lemma by double
counting. The given family F, viewed as a (d+1)-uniform hypergraph, has

a(,y,) edges, and thus it contains at least cat” nld+Dt copies of Kat+1(¢)
by Theorem 9.2.2. As was explained above, each such copy contributes at
least one good (d+1)-tuple of vertex-disjoint X-simplices of . On the other
hand, d+1 vertex-disjoint X-simplices have together (d+1)? vertices, and
hence their vertex set can be extended to a vertex set of some K4t1(t) (which
has t(d+1) vertices) in at most nt(d+1=(d+1* — n(t=d=1)(d+1) wayg This is
the maximum number of copies of K4t!(t) that can give rise to the same

good (d+1)-tuple. Hence there are at least cat M pld+y)’ good (d+1)-tuples

of X-simplices of F. By the fractional Helly theorem, at least c’at’’ nd+1

X -simplices of F share a common point, with ¢’ = ¢/(d) > 0. This proves the
second selection lemma, with the exponent sq < (4d+1)9tL. O

Proof of the Erd6s—Simonovits theorem (Theorem 9.2.2). By induc-
tion on k, we are going to show that a k-uniform hypergraph on n vertices
and with m edges contains at least fi(n,m) copies of K*(t), where

¢k
fk(na m) = Ckntk (Ek) — Cknt(kﬁl) ’
T
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with ¢, > 0 and C} suitable constants depending on k£ and also on t (¢ is
not shown in the notation, since it remains fixed). This claim with k = d+1
implies the Erd6s—Simonovits theorem.

For k =1, the claim holds.

So let k > 1 and let ‘H be k-uniform with vertex set V, |V | = n, and edge
set F, |E| = m. For a vertex v € V, define a (k—1)-uniform hypergraph H,
on V, whose edges are all edges of ‘H that contain v, but with v deleted; that
is, Hy, = (V,{e\ {v}: e € F,v € e}). Further, let H' be the (k—1)-uniform
hypergraph whose edge set is the union of the edge sets of all the H,,.

Let K denote the set of all copies of the complete (k—1)-partite hyper-
graph K*~1(¢) in H’. The key notion in the proof is that of an eztending
vertex for a copy K € K: A vertex v € V is extending for a K € K if K is
contained in ,, or in other words, if for cach edge e of K, eU{v} is an edge
in 4. The picture below shows a K?(2) and an extending vertex for it (in a
3-regular hypergraph).

The idea is to count the number of all pairs (K, v), where K € K and v is an
extending vertex of K, in two ways.

On the one hand, if a fixed copy K € K has gx extending vertices, then
it contributes (%) distinct copies of K*(t) in #. We note that one copy of
K*(t) comes from at most O(1) distinct K € K in this way, and therefore it
suffices to bound ) ik (%) from below.

On the other hand, for a fixed vertex v, the hypergraph #, contains at
least fr_1(n,m,) copies K € K by the inductive assumption, where m,, is

the number of edges of ‘H,. Hence

D x> fem1(n,my).

Kek veV

Using »_, ., My = km, the convexity of fr_, in the second variable, and
Jensen’s inequality (see page xvi), we obtain

Z gk > n fr—1(n,km/n). (9.1)
Kek

To conclude the proof, we define a convex function extending the binomial
coefficient (%) to the domain R:

(z) 0 forz <t -1,
T) = 1) (ze
9 z(z=1) t!( D) forz>t—1.
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We want to bound ) ;.- 9(¢x) from below, and we have the bound (9.1) for
S kex Gk - Using the bound |K| < nt*=1) (clear, since K*~1(t) has t(k—1)
vertices) and Jensen’s inequality, we derive that the number of copies of K *(t)

in ‘H is at least
t(k—1) n fr—1(n, km/n)
cn g D) .

A calculation finishes the induction step; we omit the details. O

Bibliography and remarks. The second selection lemma was
conjectured, and proved in the planar case, by Barany, Fiiredi, and
Lovész [BFL90]. The missing part for higher dimensions was the col-
ored Tverberg theoremn (discussed in Section 8.3). A proof for the
planar case by a different technique, with considerably better quanti-
tative bounds than can be obtained by the method shown above, was
given by Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, and Wenger
[ACE*91] (the bounds were mentioned in the text). The full proof of
the second selection lemma for arbitrary dimension appears in Alon,
Béarany, Fiiredi, and Kleitman [ABFK92|.

Several other “selection lemmas,” sometimes involving geometric
objects other than simplices, were proved by Chazelle, Edelsbrunner,
Guibas, Herschberger, Seidel, and Sharir [CEG*94].

Theorem 9.2.2 is from Erdds and Simonovits [ES83].

Exercises

1. (a) Prove a one-dimensional selection lemma: Given an n-point set X C
R and a family F of a(g) X-intervals, there exists a point common
to Q(a?(5)) intervals of F. What is the best value of the constant of
proportionality you can get?

(b) Show that this result is sharp (up to the value of the multiplicative
constant) in the full range of a.

2. (a) Show that the exponent s; in the second selection lemma in the plane

cannot be smaller than 2.

(b) Show that s3 > 2. [4] Can you also show that s4 > 27

(c) Show that the proof method via the fractional Helly theorem cannot
give a better value of s; than 3 in Theorem 9.2.1. That is, construct an
n-point set and a(g“) triangles on it in such a way that no more than
O(a®n®) triples of these triangles have a point in common.

9.3 Order Types and the Same-Type Lemma

The order type of a set. There are infinitely many 4-point sets in the
plane in general position, but there are only two “combinatorially distinct”

types of such sets:
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