Practice Final 2

MCS 421 Combinatorics

Problem 1. Prove that the Stirling numbers of the second kind satisfy a) $S(n,2) = 2^{n-1} - 1$ for $n \ge 2$, b) $S(n,n-1) = \binom{n}{2}$ for $n \ge 1$. Hint: Use the recurrence S(p,k) = kS(p-1,k) + S(p-1,k-1). **Problem 2.** Prove that Stirling numbers of the first kind satisfy a) s(n,1) = (n-1)! for $n \ge 1$ and b) $s(n,n-1) = \binom{n}{2}$ for $n \ge 1$. Hint: Use the recurrence s(p,k) = (p-1)s(p-1,k) + s(p-1,k-1).

Problem 3. Let $s^{\#}(p,k)$ denote the number of ways to arrange p people in k nonempty circles. Prove that $s^{\#}(p,p) = 1$ and $s^{\#}(p,0) = 0$ for $p \ge 1$, and

$$s^{\#}(p,k) = (p-1)s^{\#}(p-1,k) + s^{\#}(p-1,k-1).$$

Problem 4. Compute $1^3 + 2^3 + \cdots + n^3 = \sum_{k=0}^n k^4$, that is, put it in closed form.

Problem 5. A collection of subsets of $\{1, 2, ..., n\}$ has the property that each pair of subsets has at least one element in common. Prove that there are at most 2^{n-1} subsets in the collection.

Problem 6. Evaluate the sum $\sum_{k=0}^{n} {n \choose k} 2^k$.