Practice Final

Problem 1. Construct the general solution of $x^{\prime}=\left(\begin{array}{cc}-7 & 10 \\ -4 & 5\end{array}\right) x$ involving complex eigenfunctions and then obtain the general real solution.

Problem 2. Find the distance between the vector $y=\left(\begin{array}{c}5 \\ -9 \\ 5\end{array}\right)$ and the subspace

$$
W=\left\{\left(\begin{array}{c}
-3 \\
-5 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right)\right\}
$$

Then find an orthonormal basis for W.
Problem 3. Find an orthogonal basis for the column space of $A=\left(\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right)$.
Problem 4. Find the orthogonal projection of $b=\left(\begin{array}{c}3 \\ -1 \\ 5\end{array}\right)$ onto the column space of $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4 \\ 1 & 2\end{array}\right)$.

Problem 5. Let W be a subspace of \mathbb{R}^{n}. Prove that W^{\perp} is a subspace.
Problem 6. Let $\mathcal{B}=\left\{\binom{-1}{8},\binom{1}{-5}\right\}$ and $\rfloor=\left\{\binom{1}{4},\binom{1}{1}\right\}$. Find the change of coordinate matrix from \mathcal{C} to \mathcal{B}.

Problem 7. Let $A=\left(\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right)$. Find an invertible matrix P and a matrix C of the form $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$, such that $A=P C P^{-1}$.

Problem 8. Diagonalize $A=\left(\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right)$, that is, find D and P such that $A=P D P^{-1}$. Then compute A^{8}.

Problem 9. Find the inverse of the matrix $A=\left(\begin{array}{ccc}1 & -2 & -1 \\ -1 & 5 & 6 \\ 5 & -4 & 5\end{array}\right)$.

Problem 10. Let $T: R^{2} \rightarrow R^{2}$ be linear transformation that first reflects points through the x_{1}-axis, and then reflects points points through the x_{2}-axis. Find the standard matrix of T.

Problem 11. Given $\left|\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|$, find $\left|\begin{array}{ccc}3 a & 3 b & 3 c \\ 2 d+g & 2 e+h & 2 f+i \\ g & h & i\end{array}\right|$.
Problem 12. Let $H \subset \mathbb{P}_{4}$ be the set of all polynomials of degree at most 4 such that $p(0)=3$. Is H a subspace? Why or why not?

