## Practice Test 2, Math 310

Problem 1. Find an invertible matrix $P$ and a matrix $C$ of the form $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ such that $A=P C P^{-1}$, where $A=\left(\begin{array}{cc}5 & -5 \\ 1 & 1\end{array}\right)$.
Problem 2. Let $A=\left(\begin{array}{cc}2 & -3 \\ -3 & 5\end{array}\right)$. Compute $A^{100}$.
Problem 3. Find the eigenvalues of the matrix $\left(\begin{array}{ccc}-1 & 0 & 1 \\ -3 & 4 & 1 \\ 0 & 0 & 2\end{array}\right)$.
Problem 4. Let $b_{1}=\binom{-1}{8}, b_{2}=\binom{1}{-5}$ and $c_{1}=\binom{1}{4}, c_{2}=\binom{1}{1}$. Find the change of coordinate matrix from $B=\left\{b_{1}, b_{2}\right\}$ to $C=\left\{c_{1}, c_{2}\right\}$.
Problem 5. Find the bases for $\operatorname{Col}(A), \operatorname{Row}(A), \operatorname{Nul}(A)$, where $A=\left(\begin{array}{cccc}-3 & 6 & -1 & 1 \\ 1 & -2 & 2 & 3 \\ 2 & -4 & 5 & 8\end{array}\right)$.
Problem 6. Let $P$ be the vector space of all polynomials of degree at most 3, i.e., $p(t)=$ $a+b t+c t^{2}+d t^{3}$. Let $H$ be a subset of $P$, which consists of the polynomials in $P$ with the property that $p(0)=0$. Is $H$ a subspace? Prove or disprove you answer.

