Problem 1. Find an LU factorization of the matrix $A=\left[\begin{array}{ccc}-5 & 3 & 4 \\ 10 & -8 & -9 \\ 15 & 1 & 2\end{array}\right]$. Solve for \mathbf{x} in the matrix equation $A \mathbf{x}=\mathbf{0}$.

Problem 2. Is the matrix $A=\left[\begin{array}{ccc}1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0\end{array}\right]$ invertible? If so, find A^{-1}.
Problem 3. Solve the matrix equation $A \mathbf{x}=\mathbf{0}$ where $A=\left[\begin{array}{cccc}1 & 4 & -3 & 0 \\ -2 & -7 & 5 & 1 \\ -4 & -5 & 7 & 5\end{array}\right]$. Are the columns of A independent? Explain your answer.

Problem 3. Let A be an $n \times n$ matrix. If the columns of A are linearly independent, then are the rows of A linearly independent? Explain your answer.

Problem 4. If $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=7$, then what is $\left|\begin{array}{ccc}a & b & c \\ 2 d+a & 2 e+b & 2 f+c \\ g & h & i\end{array}\right|$
Problem 5. Is the vector $b=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ a linear combination of the columns $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3\end{array}\right]$? Explain why.

Problem 6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation, such that T first reflects points through the vertical x_{2}-axis and then rotates (counterclockwise) points $\pi / 2$ radians. Find the standard matrix A that represents T.

