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Abstract

Let r(n) denote the largest integer such that every family C of n pairwise disjoint segments in the
plane in general position has r(n) members whose order type can be represented by points. Pach and
Tóth gave a construction that shows r(n) < nlog 8/ log 9 [11]. They also stated that one can apply the
Erdős-Szekeres theorem for convex sets in [10] to obtain r(n) > log16 n. In this note, we will show that
r(n) > cn1/4 for some absolute constant c.

Introduction

We say that n pairwise disjoint convex sets C are in general position if no three have a common tangent
and for every distinct members A,B,C ∈ C, conv(A∪B ∪C) ̸= conv(A∪B), that is, C is not a subset of
conv(A∪B). We say that the ordered triple (A,B,C) ⊂ C has a clockwise (counterclockwise) orientation
if there are three points a ∈ A, b ∈ B, c ∈ C on the boundary of conv(A∪B∪C) that follow each other in
clockwise (counterclockwise) order. Note that a triple (A,B,C) may have both orientations. See Figure
1. Finally we say that C is representable by a point set P if there is a bijection f : C → P such that if
(A,B,C) has a unique orientation then (f(A), f(B), f(C)) has the same orientation.

Given a sequence of convex sets C in the plane in general position, the order type of C is the mapping
assigning each triple (A,B,C) ⊂ C the orientation of that triple. The order type of a point set was
introduced by Goodman and Pollack [6] in the early eighties, and has played a significant role in geometric
transversal theory [13]. According to the conjecture of Erdős and Szekeres [7], every set of 2n−2+1 points
in general position contains n points in convex position. Bisztriczky and Fejes Tóth [2] generalized this
conjecture as follows. Every family of 2n−2 + 1 disjoint convex sets in general position has n members
in convex position. A. Hubard and L. Montejano suggested a stronger conjecture, that every family
of convex sets in general position can be represented by points. However, Pach and Tóth [11] gave a
construction of n pairwise disjoint segments in general position with no subfamily of size nlog 8/ log 9 whose
order type is representable by points. They observed that it follows from a generalization of the Erdős-
Szekeres theorem for convex sets [10] that one can find log16 n members whose order type is representable
by points. Our main result is:

Theorem 1. Let r(n) denote the largest integer such that every family C of n pairwise disjoint segments
in the plane in general position has r(n) members whose order type can be represented by points. Then
there exists an absolute constant c1 such that c1n

1/4 < r(n) < nlog 8/ log 9.

The proof of Theorem 1 is based on the following result for line transversals. Recall that a collection of
convex sets in the plane C has a line transversal if there is a line that meets all members in C.
Theorem 2. For any α such that 0 < α < 1, every family of n convex sets C in the plane with no three
having a common tangent line, has a subfamily S ⊂ C such that either
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(a) conv(A,B,C) = conv(A,B).
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tion.

C
A

B
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(d) (A,B,C) with both a clockwise and
a counterclockwise orientation.

Figure 1.

1. none of the triples in S have a line transversal and |S| ≥ min(c2α
−1/2, (2/3)n)

2. or S has a line transversal and |S| ≥ c3αn,

for some absolute constant c2, c3.

By setting α = n−2/3, we have the following corollary

Corollary 3. Every family of n convex sets C in the plane with no three having a common tangent line,
has a subfamily S ⊂ C with |S| ≥ c4n

1/3 such that either

1. none of the triples in S have a line transversal

2. or S has a line transversal

for some absolute constant c4.

Proof of Theorem 2

In this section we will prove Theorem 2, which relies on two lemmas.

Lemma 4. (Spencer [12]) Let H = (V,E) be an r-uniform hypergraph on n vertices. If |E(H)| > n/r,
then there exists a subset S ⊂ V (H) such that S is an independent set and
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�
The second lemma is known as the fractional Helly theorem for line transversals in [9], and is due to Alon
and Kalai [1]. Recall that Helly’s theorem states that given a family C of convex sets in Rd such that
every d+1 share a point, then all of C shares a point. Ever since Helly proved this beautiful theorem back
in 1923 [7], there have been a vast number of Helly type results [4]. The first version of the fractional
Helly theorem was proved by Katchalski and Liu [8]. We need the following.

Lemma 5. (Alon and Kalai [1]) Let C be n convex sets in the plane such that no three share a common
tangent. If there are at least α

(
n
3

)
triples with a line transversal, then there exists line that intersects α

25n
members in C.

�
Proof of Theorem 2. LetH be a 3-uniform hypergraph with V (H) = C = {C1, C2, ..., Cn} and {Ci, Cj , Ck} ∈
E(H) if and only if there is a line that intersects Ci, Cj , Ck. Notice that an independent set in H cor-
responds to a subfamily of convex sets with no three having a line transversal. We can assume that
α
(
n
3

)
> n/3, since otherwise for large enough n we can find a line that intersects at least c3αn < 1

members of C. Now the proof falls into three cases.

Case 1: If |E(H)| ≤ n/3, then we can get rid of all of the edges by deleting at most n/3 vertices. Hence
we can find an independent set of size 2n/3.

Case 2: If n/3 < |E(H)| ≤ α
(
n
3

)
, then by applying Lemma 4 above, there exists an independent set

S ⊂ V (H) such that

|S| ≥ 2

3
n

(
n

3α
(
n
3

))1/2

≥ c2α
−1/2

for some absolute constant c2.

Case 3: If |E(H)| > α
(
n
3

)
, then by Lemma 5 we can find a line that intersects at least c3αn convex sets

for some constant c3.
�

Proof of Theorem 1

As mentioned before, the upper bound comes from a construction by Pach and Tóth [11]. For the lower
bound, let C = {S1, S2, ..., Sn} be a collection of n segments in the plane. By setting α = n−1/2, Theorem
2 implies that there are at least c2n

1/4 segments such that no triple has a line transversal or c3n
1/2

segments that can all be intersected by some line.

Case 1: If there are at least c2n
1/4 segments S ⊂ C such that every triple does not have a line transversal,

then the segments “behave” like points. Hence by picking one point from each segment in S, we have a
point set that represents the order type of S.

Case 2: Suppose there exist at least c3n
1/2 segments S ⊂ C all on a line. Without loss of generality we

can assume that this line is the y-axis and no segment is vertical. We order the segments of S in the order
they intersect the y-axis from bottom to top. By the Erdős-Szekeres theorem [7], there exists a subfamily
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Figure 2: The region where the right endpoint of Sj must lie.

S ′ ⊂ S with |S ′| ≥ √
c2n

1/4 such that the slopes of the segments are increasing or decreasing from bottom
to top. With a slight abuse of notation, let us assume S ′ = {S1, S2, ..., S|S′|} is ordered from bottom to
top and let li, ri denote the left and right endpoints of Si for each i. If the slopes are increasing in S ′,
then for any Si, Sj , Sk with i < j < k, rj must lie in the right half-plane below the line that contains Sk

and above the line that contains Si. See Figure 2.
If (ri, rj , rk) has a counterclockwise orientation, then ri, rj , rk must lie on the boundary of conv(Si ∪

Sj ∪ Sk). Therefore (Si, Sj , Sk) has a counterclockwise orientation (or both). Since Sj ̸⊂ conv(Si ∪ Sk),
if (ri, rj , rk) has a clockwise orientation, then (ri, lj , rk) must lie on the boundary of conv(Si ∪ Sj ∪ Sk).
Hence (Si, Sj , Sk) has a clockwise orientation. Therefore the point set P ′ = {r1, ..., r|S′|} represents the
order type of S ′. If the slopes in S ′ were decreasing from bottom to top, then by a similar argument, the
point set P ′ = {l1, l2, ..., l|S′|} would represent the order type of S ′.

�

Conclusion

We would like to make two final remarks. By combining Lemma 4 and Proposition 4.1 in [1], one can
easily generalize Corollary 3 for higher dimensions.

Theorem 6. Every family of n convex sets in Rd with no d+ 1 have a common tangent has a subfamily

S ⊂ C with |S| ≥ cdn
1

d+1 such that either

1. none of the (d+ 1)-tuples in S have a hyperplane that meets all of them,

2. or there exists a hyperplane that intersects all of S,

where cd is a constant that depends only on d.

Since the proof of Theorem 1 relies heavily on Theorem 2, we conjecture the following.

Conjecture 7. There exists an absolute constant ϵ such that every family of n convex sets in the plane
in general position has a subfamily of size nϵ whose order type can be represented by points.
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