# On order types of systems of segments in the plane

Andrew Suk\*

December 10, 2009

#### Abstract

Let r(n) denote the largest integer such that every family C of n pairwise disjoint segments in the plane in general position has r(n) members whose order type can be represented by points. Pach and Tóth gave a construction that shows  $r(n) < n^{\log 8/\log 9}$  [11]. They also stated that one can apply the Erdős-Szekeres theorem for convex sets in [10] to obtain  $r(n) > \log_{16} n$ . In this note, we will show that  $r(n) > cn^{1/4}$  for some absolute constant c.

#### Introduction

We say that n pairwise disjoint convex sets C are in general position if no three have a common tangent and for every distinct members  $A, B, C \in C$ ,  $conv(A \cup B \cup C) \neq conv(A \cup B)$ , that is, C is not a subset of  $conv(A \cup B)$ . We say that the ordered triple  $(A, B, C) \subset C$  has a clockwise (counterclockwise) orientation if there are three points  $a \in A, b \in B, c \in C$  on the boundary of  $conv(A \cup B \cup C)$  that follow each other in clockwise (counterclockwise) order. Note that a triple (A, B, C) may have both orientations. See Figure 1. Finally we say that C is representable by a point set P if there is a bijection  $f : C \to P$  such that if (A, B, C) has a unique orientation then (f(A), f(B), f(C)) has the same orientation.

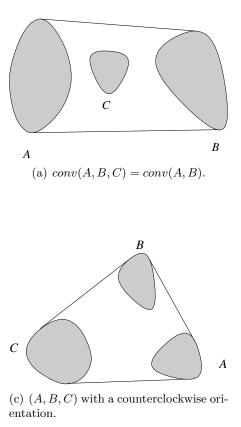
Given a sequence of convex sets C in the plane in general position, the order type of C is the mapping assigning each triple  $(A, B, C) \subset C$  the orientation of that triple. The order type of a point set was introduced by Goodman and Pollack [6] in the early eighties, and has played a significant role in geometric transversal theory [13]. According to the conjecture of Erdős and Szekeres [7], every set of  $2^{n-2} + 1$  points in general position contains n points in convex position. Bisztriczky and Fejes Tóth [2] generalized this conjecture as follows. Every family of  $2^{n-2} + 1$  disjoint convex sets in general position has n members in convex position. A. Hubard and L. Montejano suggested a stronger conjecture, that every family of convex sets in general position can be represented by points. However, Pach and Tóth [11] gave a construction of n pairwise disjoint segments in general position with no subfamily of size  $n^{\log 8/\log 9}$  whose order type is representable by points. They observed that it follows from a generalization of the Erdős-Szekeres theorem for convex sets [10] that one can find  $\log_{16} n$  members whose order type is representable by points. Our main result is:

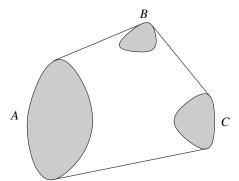
**Theorem 1.** Let r(n) denote the largest integer such that every family C of n pairwise disjoint segments in the plane in general position has r(n) members whose order type can be represented by points. Then there exists an absolute constant  $c_1$  such that  $c_1 n^{1/4} < r(n) < n^{\log 8/\log 9}$ .

The proof of Theorem 1 is based on the following result for line transversals. Recall that a collection of convex sets in the plane C has a *line transversal* if there is a line that meets all members in C.

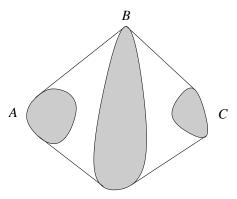
**Theorem 2.** For any  $\alpha$  such that  $0 < \alpha < 1$ , every family of n convex sets C in the plane with no three having a common tangent line, has a subfamily  $S \subset C$  such that either

<sup>\*</sup>Courant Institute, New York. Email: suk@cims.nyu.edu





(b) (A, B, C) with a clockwise orientation.



(d) (A, B, C) with both a clockwise and a counterclockwise orientation.



- 1. none of the triples in S have a line transversal and  $|S| \geq \min(c_2 \alpha^{-1/2}, (2/3)n)$
- 2. or S has a line transversal and  $|S| \ge c_3 \alpha n$ ,

for some absolute constant  $c_2, c_3$ .

By setting  $\alpha = n^{-2/3}$ , we have the following corollary

**Corollary 3.** Every family of n convex sets C in the plane with no three having a common tangent line, has a subfamily  $S \subset C$  with  $|S| \ge c_4 n^{1/3}$  such that either

- 1. none of the triples in S have a line transversal
- 2. or S has a line transversal

for some absolute constant  $c_4$ .

#### Proof of Theorem 2

In this section we will prove Theorem 2, which relies on two lemmas.

**Lemma 4.** (Spencer [12]) Let H = (V, E) be an r-uniform hypergraph on n vertices. If |E(H)| > n/r, then there exists a subset  $S \subset V(H)$  such that S is an independent set and

$$|S| \ge \left(1 - \frac{1}{r}\right) n \left(\frac{n}{r|E(H)|}\right)^{\frac{1}{r-1}}.$$

The second lemma is known as the fractional Helly theorem for line transversals in [9], and is due to Alon and Kalai [1]. Recall that Helly's theorem states that given a family C of convex sets in  $\mathbb{R}^d$  such that every d+1 share a point, then all of C shares a point. Ever since Helly proved this beautiful theorem back in 1923 [7], there have been a vast number of Helly type results [4]. The first version of the fractional Helly theorem was proved by Katchalski and Liu [8]. We need the following.

**Lemma 5.** (Alon and Kalai [1]) Let C be n convex sets in the plane such that no three share a common tangent. If there are at least  $\alpha \binom{n}{3}$  triples with a line transversal, then there exists line that intersects  $\frac{\alpha}{25}n$  members in C.

Proof of Theorem 2. Let H be a 3-uniform hypergraph with  $V(H) = \mathcal{C} = \{C_1, C_2, ..., C_n\}$  and  $\{C_i, C_j, C_k\} \in E(H)$  if and only if there is a line that intersects  $C_i, C_j, C_k$ . Notice that an independent set in H corresponds to a subfamily of convex sets with no three having a line transversal. We can assume that  $\alpha\binom{n}{3} > n/3$ , since otherwise for large enough n we can find a line that intersects at least  $c_3\alpha n < 1$  members of  $\mathcal{C}$ . Now the proof falls into three cases.

Case 1: If  $|E(H)| \le n/3$ , then we can get rid of all of the edges by deleting at most n/3 vertices. Hence we can find an independent set of size 2n/3.

Case 2: If  $n/3 < |E(H)| \le \alpha \binom{n}{3}$ , then by applying Lemma 4 above, there exists an independent set  $S \subset V(H)$  such that

$$|S| \ge \frac{2}{3}n\left(\frac{n}{3\alpha\binom{n}{3}}\right)^{1/2} \ge c_2\alpha^{-1/2}$$

for some absolute constant  $c_2$ .

Case 3: If  $|E(H)| > \alpha \binom{n}{3}$ , then by Lemma 5 we can find a line that intersects at least  $c_3 \alpha n$  convex sets for some constant  $c_3$ .

#### Proof of Theorem 1

As mentioned before, the upper bound comes from a construction by Pach and Tóth [11]. For the lower bound, let  $C = \{S_1, S_2, ..., S_n\}$  be a collection of *n* segments in the plane. By setting  $\alpha = n^{-1/2}$ , Theorem 2 implies that there are at least  $c_2 n^{1/4}$  segments such that no triple has a line transversal or  $c_3 n^{1/2}$ segments that can all be intersected by some line.

Case 1: If there are at least  $c_2 n^{1/4}$  segments  $S \subset C$  such that every triple does not have a line transversal, then the segments "behave" like points. Hence by picking one point from each segment in S, we have a point set that represents the order type of S.

Case 2: Suppose there exist at least  $c_3n^{1/2}$  segments  $\mathcal{S} \subset \mathcal{C}$  all on a line. Without loss of generality we can assume that this line is the *y*-axis and no segment is vertical. We order the segments of  $\mathcal{S}$  in the order they intersect the *y*-axis from bottom to top. By the Erdős-Szekeres theorem [7], there exists a subfamily

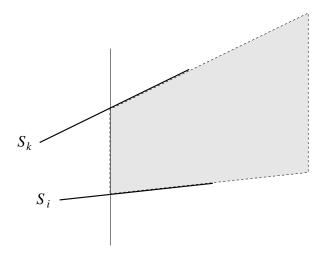


Figure 2: The region where the right endpoint of  $S_j$  must lie.

 $\mathcal{S}' \subset \mathcal{S}$  with  $|\mathcal{S}'| \geq \sqrt{c_2} n^{1/4}$  such that the slopes of the segments are increasing or decreasing from bottom to top. With a slight abuse of notation, let us assume  $\mathcal{S}' = \{S_1, S_2, ..., S_{|\mathcal{S}'|}\}$  is ordered from bottom to top and let  $l_i, r_i$  denote the left and right endpoints of  $S_i$  for each i. If the slopes are increasing in  $\mathcal{S}'$ , then for any  $S_i, S_j, S_k$  with  $i < j < k, r_j$  must lie in the right half-plane below the line that contains  $S_k$  and above the line that contains  $S_i$ . See Figure 2.

If  $(r_i, r_j, r_k)$  has a counterclockwise orientation, then  $r_i, r_j, r_k$  must lie on the boundary of  $conv(S_i \cup S_j \cup S_k)$ . Therefore  $(S_i, S_j, S_k)$  has a counterclockwise orientation (or both). Since  $S_j \not\subset conv(S_i \cup S_k)$ , if  $(r_i, r_j, r_k)$  has a clockwise orientation, then  $(r_i, l_j, r_k)$  must lie on the boundary of  $conv(S_i \cup S_j \cup S_k)$ . Hence  $(S_i, S_j, S_k)$  has a clockwise orientation. Therefore the point set  $P' = \{r_1, ..., r_{|\mathcal{S}'|}\}$  represents the order type of  $\mathcal{S}'$ . If the slopes in  $\mathcal{S}'$  were decreasing from bottom to top, then by a similar argument, the point set  $P' = \{l_1, l_2, ..., l_{|\mathcal{S}'|}\}$  would represent the order type of  $\mathcal{S}'$ .

### Conclusion

We would like to make two final remarks. By combining Lemma 4 and Proposition 4.1 in [1], one can easily generalize Corollary 3 for higher dimensions.

**Theorem 6.** Every family of n convex sets in  $\mathbb{R}^d$  with no d+1 have a common tangent has a subfamily  $S \subset C$  with  $|S| \ge c_d n^{\frac{1}{d+1}}$  such that either

- 1. none of the (d+1)-tuples in S have a hyperplane that meets all of them,
- 2. or there exists a hyperplane that intersects all of S,

where  $c_d$  is a constant that depends only on d.

Since the proof of Theorem 1 relies heavily on Theorem 2, we conjecture the following.

**Conjecture 7.** There exists an absolute constant  $\epsilon$  such that every family of n convex sets in the plane in general position has a subfamily of size  $n^{\epsilon}$  whose order type can be represented by points.

## References

- [1] Alon, A., Kalai, G.: Bounding the piercing number. Discrete Comput. Geom. 13, 245-256, (1995)
- [2] Bisztriczky, T., Fejes Tóth, G.: A generalization of the Erdős-Szekeres convex n-gon theorem, Journal für die reine und angewandte Mathematik. 395 (1989)
- [3] Bisztriczky, T., Fejes Tóth, G.: Convexly independent sets, Combinatorica. 10, 195-202 (1990)
- [4] Eckhoff, J.: Helly, Radon, and Carathéodory Type Theorems. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 389-448. North-Holland, Amsterdam, Netherlands (1993)
- [5] Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463-470 (1935)
- [6] Goodman, J. E., Pollack, R.: Multidimensional sorting, SIAM J. Comput. 12, 484-507 (1983)
- [7] Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jber. Deutsch. Math. Vereinig. 32, 175-176 (1923)
- [8] Katchalski, M., Liu, A.: A problem of geometry in  $\mathbb{R}^n$ . In: Proc. Amer. Math. Soc. 75, 284-288 (1979)
- [9] Matousek, J.: Lectures on Discrete Geometry. Springer-Verlag, New York (2002)
- [10] Pach, J., Tóth, G.: A generalization of the Erdős-Szekeres theorem to disjoint convex sets. Discrete and Computational Geometry. 19, 437-445 (1998)
- [11] Pach, J., Tóth, G.: Families of convex sets not representable by points. Indian Statistical Institute Platinum Jubilee Commemorative Volume–Architecture and Algorithms, World Scientific, Singapore, 43-53 (2009)
- [12] Spencer, J.: Turán's Theorem for k-Graphs. Disc. Math. 2, 183-186 (1972)
- [13] Wenger, R.: Progress in geometric transversal theory. In: Chazelle, B., Goodman, J. E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, Contemp. Math., 223, pp. 375-393. Amer. Math. Soc. (1999)