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Problem: Given a complete n-vertex simple topological graph G,
what is the size of the largest subset of pairwise disjoint edges.
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Definition

A topological graph is a graph drawn in the plane with vertices
represented by points and edges represented by curves connecting
the corresponding points. A topological graph is simple if every
pair of its edges intersect at most once.
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Definitions

We will only consider simple topological graphs.
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Conjecture (Conway)

Every n-vertex simple topological graph with no two disjoint edges,
has at most n edges.

o

Theorem (Lovész, Pach, Szegedy, 1997)

Every n-vertex simple topological graph with no two disjoint edges,
has at most 2n edges.

Best known 1.43n by Fulek and Pach, 2010.
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Generalization.

Theorem (Pach and Téth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint
edges, has at most Cenlog®* 10 n edges.

Conjecture to be at most O(n) (for fixed k). By solving for k in

Cinlog® 10 p = (5)-

Corollary (Pach and Téth, 2005)

Every complete n-vertex simple topological graph has at least
Q(log n/ log log n) pairwise disjoint edges.
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Conjecture (Pach and Téth)

There exists a constant §, such that every complete n-vertex
simple topological graph has at least Q(n?) pairwise disjoint edges.
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Definitions
History

Pairwise disjoint edges in complete n-vertex simple topological
graphs:

o Q(Iogl/6 n), Pach, Solymosi, Téth, 2001.

O Q(logn/loglog n), Pach and Téth, 2005.

O Q(log' " n), Fox and Sudakov, 2008.

Note € ~ 1/50. All results are slightly stronger statements.
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Definitions
Main result

Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least
Q(n'/3) pairwise disjoint edges.
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Clearly the simple condition is required.
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Definitions

Clearly the simple condition is required for this problem.

Andrew Suk Disjoint edges in complete topological graphs



Definitions

Clearly the simple condition is required for this problem.
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Sketch of proof

Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least
Q(n'/3) pairwise disjoint edges.

Kn+1

Andrew Suk Disjoint edges in complete topological graphs



Sketch of proof

Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least
Q(n'/3) pairwise disjoint edges.
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Define F1 = |J {Si;}, where S;; is the set of vertices inside
1<i<j<n
triangle vo, vj, v;.

S39={v1,v, 7}
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Define F1 = |J {Sij}, where S;; is the set of vertices inside
1<i<j<n
triangle vo, vj, v;.

S30 ={vi,v, v}, So11={v1,vs, vo}
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Define F1 = |J {Sij}, where S;; is the set of vertices inside
1<i<j<n
triangle vo, vj, v;.

M1

S30={v1,v5, v}, 5211 = {vi,vs, v}, Ss511 = {w}.
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F1 is not "complicated" .

Any m sets in F1, S1, ..., Sm, partitions the ground set X into
O(m?) equivalence classes.

Vertices x ~ y, if both x, y belong to the exact same sets among
S1,...,Sm. In other words, no set among 51, ..., S, contains x and
not y (and vice versa).
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Definitions

Proof: m triangles partitions the plane into O(m?) cells.

o

o

/
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: - y P
Define set system /2 = |J {S];}, where v € 5} ; if
1<i<j<n

topological edges vyvx and v;v; cross.

Vo
o [ ]
V7
A .

I
S37="1
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Definitions

Define set system 75 = |J {S];}, where v € 5] ; if
1<i<j<n i
topological edges vovik and v;v; cross.

Vo
‘\ ‘
Vs
\'5

Séj = {V27 V67 V5}-
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: - y P
Define set system /2 = |J {S5];}, where v € 5 ; if
1<i<j<n

topological edges vyvx and v;v; cross.

Vo

S§77 ={va, v5, v5}, Sig =?.
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Definitions

Define set system 75 = |J {S];}, where v € 5] ; if
1<i<j<n i
topological edges vovi and v;v; cross.

Vo

5

S37={v2,v6, 5}, 539 = {v1, 3, v, v12}.
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Again, F, is not "complicated”. Set F = F; U F,. One can show

Any m sets in F partitions X into at most O(m3) equivalence
classes.
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Definitions
Main tool

Theorem (Matching theorem, Chazelle and Welzl, 1989)

Let F be a set system on an n element point set X (n is even),
such that any m sets in F partitions X into at most O(m?)
equivalence classes. Then there exists a perfect matching M on X
such that each set in F stabs at most O(n%*/3) members in M.
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Definitions
Main tool

Theorem (Chazelle and Welzl, 1989)

Let F be a set system on an n element point set X (n is even),
such that any m sets in F partitions X into at most O(m?)
equivalence classes. Then there exists a perfect matching M on X
such that each set in F stabs at most O(n%/3) members in M.

—

Y/
~

M = {(x1,y1), (x2, ¥2); -+ (Xn/25 ¥Yn/2) }-
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Definitions
Main tool

Theorem (Chazelle and Welzl, 1989)

Let F be a set system on an n element point set X (n is even),
such that any m sets in F partitions X into at most O(m?>)
equivalence classes. Then there exists a perfect matching M on X
such that each set in F stabs at most O(n%*/3) members in M.

Y/

M = {(x1,y1), (X2, ¥2); -+ (Xn/25 ¥Yn/2) }-
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Definitions
Main tool

Theorem (Matching Lemma, Chazelle and Welzl 1989)

Let F be a set system on an n element point set X (n is even),
such that any m sets in F partitions X into at most O(m?)
equivalence classes. Then there exists a perfect matching M on X
such that each set in F stabs at most O(n%3) members in M.

N
-~

M = {(x1,y1), (X2, ¥2); -+ (Xn/25 ¥Yn/2) }-
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Definitions

Auxiliary graph G, where V(G) = M and v;v; — vcv; if S;j or S;;
stabs vy v;.
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Definitions

Auxiliary graph G, where V(G) = M and v;v; — vcv; if S;j or S;;
stabs v v;.

Vo

@@@
IR
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Definitions

Auxiliary graph G, where V(G) = M and v;v; — viv; if S;j or S;J
stabs vy v;.

<
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Definitions

Auxiliary graph G, where V(G) = M and vjv; — viv; if S;j or S;J
stabs v v;.

Sij and Si; stabs (in total) at most O(n?/3) members in
M= V(G). |E(6)] < O(n®3).
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Definitions

|E(G)| < O(n®3), by Turadn, G contains an independent set of
size Q(n'/3).

N @
@® =
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Definitions

|E(G)| < O(n®3), by Turadn, G contains an independent set of
/3
e

)
—~
S
—
~

Vo

PREEN

N

Claim!
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Definitions

|E(G)| < O(n®3), by Turdn, G contains an independent set of
size Q(n'/3).

Vo

PREEN

@@v’

Y M
|

Claim!
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Definitions

Since S;; does NOT stab v,v;

% o
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\Yi

Assume edges cross.

Andrew Suk Disjoint edges in complete topological graphs



S}, stabs vjv;, which is a contradiction.
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Definitions

L

Two edges must be disjoint.
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Same argument shows
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Definitions

Q(n'/3) pairwise disjoint edges in K, 1.

Vo

PREEN

<) S

V.

e M
)
1
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Open Problems.

@ Can the Q(n'/3) bound be improved? Perhaps to Q(n'/2)?
@ Note that Géza Téth show that 7%(m) = @(m3)_

© Best known upper bound construction: O(n) pairwise disjoint
edges.

Q Find Q(n°) pairwise disjoint edges in dense simple topological
graphs.
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Thank you!
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