Test 1, MCS 421

Problem 1. Prove (from scratch) the Erdős-Szekeres monotone subsequence theorem: Every sequence $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ of $n^{2}+1$ distinct real numbers contains either an increasing subsequence of length $n+1$ or a decreasing subsequence of length $n+1$.

Solution: Page 76, Application 9 in Chapter 3.
Problem 2. What is the coefficient of $x_{1}^{3} x_{2}^{3} x_{3} x_{4}^{2}$ in the expansion of $\left(x_{1}-x_{2}+2 x_{3}-2 x_{4}\right)^{9}$.
Solution: $\frac{9!}{3!3!2!}(-1)^{3}(2)(-2)^{2}$.
Problem 3. Let $X=\{1,2, \ldots, 12\}$ be the set of the first 12 positive integers, and let \mid be the relation on the pairs of X, where for $x, y \in X, x \mid y$ if x divides y. For example, $2 \mid 4$, but $2 \nmid 3$. It is easy to see that (X, \mid) is a poset. Determine a chain of largest size in X, and partition X into the smallest number of antichains.

Solution: Largest chain is $\{1,2,4,8\}$. Decomposition into four antichains:

$$
\{1\},\{2,3,5,7\},\{4,6,9,10,11\},\{8,12\} .
$$

Problem 4. There are $2 n+1$ identical books to be put in a bookcase with three shelves. In how many ways can this be done if each pair of shelves together contains more books than the other shelf?

Solution: Let x_{i} denote the number of books on shelf i. Then we must have $x_{i} \leq n$, and we want to count the number of integer solutions $x_{1}+x_{2}+x_{3}=2 n+1$. Set $y_{i}=n-x_{i} \geq 0$, which implies $y_{1}+y_{2}+y_{3}=n-1$. There is a one-to-one relationship between the integer solutions for the x_{i} and the integer solutions for the y_{i}. Hence it suffices to solve the number of solutions for the y_{i}. By stars and bars, we have $\binom{n-1+2}{2}=\binom{n+1}{2}$.

Problem 5. We are to seat five boys, five girls, and one parent in a circular arrangement around a table. In how many ways can this be done if no boy is to sit next a boy and no girl is to sit next to a girl?

Solution: There is one way to seat the parent down first. Starting from the parent's right, we have boy-girl-boy-girl-...... or girl-boy-girl-boy-.... For each scenario, there are 5! ways to sit the boys and 5 ! ways to sit the girls, which gives us a total of $2(5!)^{2}$ solutions.

Problem 6. Prove that, for any $n+1$ integers $a_{1}, a_{2}, \ldots, a_{n+1}$, there exist two of the integers a_{i} and a_{j} with $i \neq j$ such that $a_{i}-a_{j}$ is divisible by n.

Solution: Dividing n into a_{i} gives a remainder of $0,1,2, \ldots$, or $n-1$. By pigeonhole, there are two numbers a_{i} and a_{j} whose remainder are the same. Hence $a_{i}-a_{j}$ is divisible by n.

