Problem 1. Determine all values h and k such that the system $x_{1}+3 x_{2}=k, 4 x_{1}+h x_{2}=8$ has i) no solutions, ii) contains a unique solution, iii) has infinitely many solutions.
Solution. We have the augmented matrix $\left(\begin{array}{ccc}1 & 3 & k \\ 4 & h & 8\end{array}\right)$. After performing elementary row operations, we have the echelon form matrix $\left(\begin{array}{ccc}1 & 3 & k \\ 0 & h-12 & 8-4 k\end{array}\right)$. i) We have no solutions when $h=12$ and $k \neq 2$. ii) We have a unique solution when $h \neq 12$. iii) we have infinitely many solutions when $h=12$ and $k=2$.

Problem 2. Find the LU factorization of $\left(\begin{array}{cccc}2 & -4 & -2 & 3 \\ 6 & -9 & -5 & 8 \\ 4 & -2 & -2 & -1 \\ -6 & 3 & 3 & 4\end{array}\right)$.
Solution. $A=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ -3 & -3 & -2 & 1\end{array}\right)\left(\begin{array}{cccc}2 & -4 & -2 & 3 \\ 0 & 3 & 1 & -1 \\ 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0\end{array}\right)$
Problem 3. Let $T: R^{2} \rightarrow R^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}-\right.$ $\left.2 x_{2},-x_{1}+3 x_{2}, 3 x_{1}-2 x_{2}\right)$. Find $\left(b_{1}, b_{2}\right)$ such that $T\left(b_{1}, b_{2}\right)=(-1,4,9)$. Is T one-to-one? Is T onto? Is T invertible?
Solution. We have the transformation matrix $A=\left(\begin{array}{cc}1 & -2 \\ -1 & 3 \\ 3 & -2\end{array}\right)$. After performing elementary row operations, we have the echelon form matrix $\left(\begin{array}{cc}1 & -2 \\ 0 & 1 \\ 0 & 0\end{array}\right)$. Since there is a pivot in every column, T is one-to-one. Since there is NOT a pivot in every row, T is not onto. T is not invertible since A is not a square matrix.

Problem 4. Describe the solution set of the system $3 x_{1}+5 x_{2}-4 x_{3}=0,-3 x_{1}-2 x_{2}+4 x_{3}=$ $0,6 x_{1}+x_{2}-8 x_{3}=0$ using parametric vector form.

Solution. We have the augmented matrix $\left(\begin{array}{cccc}3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0\end{array}\right)$. After performing elementary row operations, we have the echelon form matrix $\left(\begin{array}{cccc}3 & 5 & -4 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. The x_{3} is a free
variable, $x_{2}=0$, and $x_{1}=4 x_{3} / 3$. Our solution in parametric vector form is $x_{3}\left(\begin{array}{c}4 / 3 \\ 0 \\ 1\end{array}\right)$, where x_{3} is any real number.

Problem 5. Let $v_{1}=\left(\begin{array}{c}1 \\ -5 \\ -3\end{array}\right), v_{2}=\left(\begin{array}{c}-2 \\ 10 \\ 6\end{array}\right), v_{3}=\left(\begin{array}{c}2 \\ -9 \\ h\end{array}\right)$. For what values of h is v_{3} in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$? For what values of h is $\left\{v_{1}, v_{2}, v_{3}\right\}$ linear dependent?
Solution. v_{3} is in the Span when there are solutions to the system whose augmented matrix is $\left(\begin{array}{ccc}1 & -2 & 2 \\ -5 & 10 & -9 \\ -3 & 6 & h\end{array}\right)$.
$\left(\begin{array}{ccc}1 & -2 & 2 \\ 0 & 0 & 1 \\ -3 & 6 & h\end{array}\right)$. The second row says that $0=1$ which is a contradiction. Hence v_{3} is
NOT in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ for all values of h. The vectors v_{1}, v_{2}, v_{3} are dependent for all values of h since $-2 v_{1}=v_{2}$.

Problem 6. Let $x=\binom{x_{1}}{x_{2}}, v_{1}=\binom{-2}{5}$, and $v_{2}=\binom{7}{-3}$, and let $T: R^{2} \rightarrow R^{2}$ be a linear transformation that maps x into $x_{1} v_{1}+x_{2} v_{2}$. Find a matrix A such that $T(x)=A x$ for each x. Is T invertible? If so, find A^{-1}.

Solution. $A=\left(\begin{array}{cc}-2 & 7 \\ 5 & -3\end{array}\right)$. Since $(-2)(-3)-(7)(5) \neq 0, A$ is invertible, and $A^{-1}=$ $(1 /-29)\left(\begin{array}{ll}-3 & -7 \\ -5 & -2\end{array}\right)$

