Midterm 2, 5 April 2017

Problem 1. Let W be a subspace of \mathbb{R}^{3}, and let W^{\perp} be the orthogonal complement of W. Prove or disprove that W^{\perp} is a subspace.
Solution. 1) the 0 vector is in W^{\perp} since $0 \cdot w=0$ for any w in W. 2) For any two vectors u, v in W^{\perp}, notice that

$$
(u+v) \cdot w=u \cdot w+v \cdot w=0+0=0
$$

for any w in W. Hence $(u+v)$ is in W^{\perp}. 3) Finally for v in $W^{\perp},(\alpha v) \cdot w=\alpha(v \cdot w)=\alpha(0)=0$. So (αv) is also in W^{\perp}. Therefore, W^{\perp} is a subspace.
Problem 2. Suppose A is row equivalent to B where. Find $\operatorname{rank}(A)$ and $\operatorname{dim}(\operatorname{Nul}(A))$. Then find bases for $\operatorname{Col}(A), \operatorname{Row}(A)$, and $\operatorname{Nul}(A)$.

$$
A=\left(\begin{array}{cccccc}
1 & 1 & -3 & 7 & 9 & -9 \\
1 & 2 & -4 & 10 & 13 & -12 \\
1 & -1 & -1 & 1 & 1 & -3 \\
1 & -3 & 1 & -5 & -7 & 3 \\
1 & -2 & 0 & 0 & -5 & -4
\end{array}\right) \quad B=\left(\begin{array}{cccccc}
1 & 1 & -3 & 7 & 9 & -9 \\
0 & 1 & -1 & 3 & 4 & -3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Solution. $\operatorname{Rank}(A)=3$, and the basis for $\operatorname{Col}(A)$ is $\left\{\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 2 \\ -1 \\ -3 \\ -2\end{array}\right),\left(\begin{array}{c}7 \\ 10 \\ 1 \\ -5 \\ 0\end{array}\right)\right\}$. The dimension of $\operatorname{Row}(A)$ is 3 , and its basis is the first three rows of matrix B. The dimension of $\operatorname{Null}(A)$ is 3. Back solving the homogeneous system given by matrix B gives the basis

$$
\left\{\left(\begin{array}{l}
2 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-9 \\
-7 \\
0 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right)\right\} .
$$

Problem 3. Let $\mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\mathcal{B}=\left\{b_{1}, b_{2}, b_{3}\right\}$ be bases for a vector space V, and suppose $b_{1}=2 a_{1}-a_{2}+a_{3}, b_{2}=3 a_{2}+a_{3}$, and $b_{3}=-3 a_{1}+2 a_{3}$. Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{A}. Find $[x]_{\mathcal{A}}$ for $x=b_{1}-2 b_{2}+2 b_{3}$.
Solution. The change of coordinate matrix is $\left(\begin{array}{ccc}2 & 0 & -3 \\ -1 & 3 & 0 \\ 1 & 1 & 2\end{array}\right)$. Since $x=b_{1}-2 b_{2}+2 b_{3}=$ $-4 a_{1}-7 a_{2}+3 a_{3}$, we have $[x]_{\mathcal{A}}=\left(\begin{array}{c}-4 \\ -7 \\ 3\end{array}\right)$.

Problem 4. Diagonalize the matrix $A=\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)$. That is write $A=P D P^{-1}$ where D is a diagonal matrix, and P is an invertible matrix. Then compute A^{12}.
Solution. We have the characteristic equation $(2-\lambda)(1-\lambda)-12=\lambda^{2}-3 \lambda-10=$ $(\lambda-5)(\lambda+2)=0$. So $\lambda_{1}=5, \lambda_{2}=-2$. For $\lambda_{1}=5$, we solve the homogeneous system $\left(\begin{array}{ccc}-3 & 3 & 0 \\ 4 & -4 & 0\end{array}\right)$. This gives the general solution $x_{1}\binom{1}{1}$, so $v_{1}=\binom{1}{1}$. For $\lambda_{2}=-2$, we solve the homogeneous system $\left(\begin{array}{lll}4 & 3 & 0 \\ 4 & 3 & 0\end{array}\right)$. This gives the general solution $x_{1}\binom{-3 / 4}{1}$, so $v_{2}=\binom{-3}{4}$. Therefore, $P=\left(\begin{array}{cc}1 & -3 \\ 1 & 4\end{array}\right)$ and $P^{-1}=(1 / 7)\left(\begin{array}{cc}4 & 3 \\ -1 & 1\end{array}\right)$. Hence

$$
A=\left(\begin{array}{cc}
1 & -3 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
5 & 0 \\
0 & -2
\end{array}\right)(1 / 7)\left(\begin{array}{cc}
4 & 3 \\
-1 & 1
\end{array}\right) .
$$

and

$$
A^{12}=\left(\begin{array}{cc}
1 & -3 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
5^{12} & 0 \\
0 & -2^{12}
\end{array}\right)(1 / 7)\left(\begin{array}{cc}
4 & 3 \\
-1 & 1
\end{array}\right)
$$

Problem 5. Let $A=\left(\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right)$ be a matrix acting on \mathbb{C}^{2}. Find the eigenvalues and a basis for each eigenspace in \mathbb{C}^{2}. Then find an invertible matrix P and a matrix C of the form $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ such that $A=P C P^{-1}$.
Solution. We have the characteristic equation $(5-\lambda)(3-\lambda)+2=\lambda^{2}-8 \lambda+17$ Using the quadratic formula, we have $\lambda_{1,2}=\frac{8 \pm \sqrt{-4}}{2}=4 \pm i$. Set $\lambda=4-i$. Then $C=\left(\begin{array}{cc}4 & -1 \\ 1 & 4\end{array}\right)$. To find the eigenvectors, we solve the homogeneous system $\left(\begin{array}{ccc}1+i & -2 & 0 \\ 1 & -1+i & 0\end{array}\right)$. back solving gives us the general solution $x_{2}\binom{1-i}{1}$.
Therefore, $P=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ and $P^{-1}=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$. Hence $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}4 & -1 \\ 1 & 4\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$
Problem 6. Let $H \subset \mathbb{P}_{3}$ be the set of polynomials of the form $p(t)=a t^{3}+2$, where a is a real number. Is H a subspace? Why or why not?

Solution. For all values of a, the zero polynomial is not obtained. Since the zero polynomial is not in H, it is not a subspace.

