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The spectral theorem for unitary operators

The presentation given here largely follows [4]. K will refer to the unit circle throughout.

Recall that a measure preserving automorphism (m.p.a.) 7" on a Borel probability space
(X, B, 1) gives rise to a unitary map on L?(X, u) via f — f o T. Call this map Up. It is
natural to ask if the spectral properties of Upr says something about 7" as an m.p.a. Be-
fore delving into this relationship, let’s discuss some facts about unitary operators and the
spectral theorem.

Motivation: given a unitary (even normal) operator U on a finite dimensional Hilbert
space H, we can find A\, Ag, ..., Ay complex numbers, and mutually orthogonal subspaces
Hy, ..., Hy such that

k
H= @ H,
=1
and
k
U= @ NP,
=1

where P; is the projection onto H;.

Or: if H is n-dimensional, let X be a set of size n with counting measure p. Then
L?(X, p) is just C", and fin. dim. spectral theorem says that U acts on L?(X, ) via

where f(z) runs through the eigenvalues of U as x runs through the finite set X. All the
spectral theorem for normal operators does is extend this to infinite dimensional H, where
X will now be a non-trivial measure space (i.e. o(U) C C).

We could consider both the strong and weak topology on U(H). In fact, these topologies
agree. Consider a sequence (U,,) converging weakly to U. So for any £ € H we have

(Un&,U€) — (UL, UE) = |UE)?



so that
(Un€ — UE, Up€ — UE) = ||Uné||* + ||UE||* — 2Re(Un&, UE) — 0

using the fact that U,, and U preserve norm. So weak convergence implies strong conver-
gence.

Definition. We say that a sequence of complex numbers {r,} is positive definite if for
all sequences {a,} and all nonnegative integers N,

N
Z Tn—mQnlm > 0

n,m=0

Notice that if U is a unitary operator on a Hilbert space H, and = € H, then the
sequence 1, = (U™x, z) is a positive definite sequence. For

N N
Z (U Mz, x)anty, = Z (U"x, U™x)anan,
n,m=0
N

n,m=0
= Z ZaZU T

=0

Theorem (Herglotz). If {r,} is a positive definite sequence then there is a unique finite,
non-negative measure p on the circle (or [0, 1) such that

rn:/ 2"du
K

That is, the {r,} are the fourier coefficients of the measure.

(sidenote: when it comes to providing spectral measures for the transformations Ur,
there is a more direct way to do it than use Herglotz’s theorem.)

The proof uses the following facts: positive definite sequences are bounded, z" has
integral 0 around the unit circle for n # 0, with respect to Lebesgue measure, and the poly-
nomials p(z) are dense in the space of continuous functions. Along with the Riesz-Markov
representation theorem and a couple algebraic maneuvers, this gives us the existence part
of this theorem.

Also note, knowing / 2"dp for all n € Z completely determines p as a member of

C(K)*, since the polynomials are dense in this space.



Theorem (Wiener). Let 1 be a finite Borel measure defined on K. If H is a closed
subspace of L?(K,p) such that H is invariant under the map f(z) — zf(z), then H is
necessarily of the form

H = xpL*(K,p) ={f € L*(K, p) : supp f C B}

Let U be a unitary operator on H and let x € H. Then let Z(x) be the closed linear
span of the set {U"x : n € Z}. So Z(x) is what we call a cyclic subspace of H with respect
to U, with cyclic-vector z. Z(z) is a reducing subspace for U (noting that Z(x) is invariant
under both U and U~ = U*). Also, let y1, be the measure we get from Hergoltz’s theorem.

(Aside: not every invariant subspace for a unitary map is reducing. Consider U :
(%(Z) — (%(Z) the right shift. Let M = {x € (*(Z) : z(n) = 0 for n < 0}. Then M is U
invariant but not reducing.)

Claim. U|Z(x) is unitarily equivalent to the map V, : L?(K, u,) — L*(K, i) defined by
(Vaf)(z) = 2f(2).

That is, on the cyclic subspace Z(z), U behaves just like a multiplication operator;
indeed, multiplication by the identity function.

(sketch). Just define W on the set {U"x} by W(U™x) = z". Then by defnition this is inner
product preserving. Now extend to linear combinations and take closures to get an isometry
onto L?(K, j1.), as the polynomial functions are sup-norm dense in C(K), and furthermore,

the continuous functions are dense in L2(K, j;).
O

As a result of this construction, we get a correspondence between cyclic subspaces and
measures on K. There are various properties to prove. For example, U|Z(z) ~ U|Z(y)
(unitarily equivalent) iff 1, ~ . By the above it suffices to show V, =~ Vj, iff i, =~ p,,. But
if WV, = V,W for some unitary W, let f(z) be the function W (1), where 1 is the constant
function of L*(K, yiz). Then WV,'1 = V,? f, which is to say W(z") = f(z)z". So by density
considerations, W (g) = f - g for all g € L?(K, pi,). But W is an isometry, so given B C K
measurable we have

ol B) = [ ol = [ 11P1e Py = [ 7P,
K K B
therefore p, < py. By symmetry pu, & pu,.
On the other hand if u, ~ pu, then we can define an isometry by g € L*(K, pg) —

djiy

g(



There are several other facts one needs to check in order to prove the theorem but I
omit them for the sake of brevity.

If U is a unitary operator on a separable Hilbert space H, then there exists a maxi-
mal cyclic subspace. Indeed, for any = € H there is a maximal cyclic subspace containing x.

Claim. If U; are unitary operators on this Hilbert spaces H; such that U; ~ U and
Ur|Z(z) = Us| Z(y) then Uy |Z(z)* = Us| Z(y)*.

Proof omitted for now.

Finally, let {e,} be an orthonormal basis for H. Let Z(z1) be a cyclic subspace con-
taining e;. Let Z(z2) be a maximal cyclic subspace of Z(z1)' containing (I — Py)es, the
projection of ey onto Z(x1)*. Note e; € Z(x1), ex € Z(x1) ® Z(x2). Repeating this for all
n, we get e, € Z(x1) ® Z(x2) ® ...DH Z(x,) and, since the e, span the space, we get

H=> P Z()

n i<n
By maximality, we have pi;; = ptz, = .... This is because if z,y € H and p, L p,, then
Z(x+vy) = Z(z)® Z(y), and so if Z(x) is maximal, for any y # 0, we must have y [ x.
This means y < z for all y (measures split into absolutely continuous and perpendicular
components.)

Now note: since we are only concerned about the identity of these measures up to
measure equivalence, the above data can be summarized by providing p,, and A, =

dpig,,
supp ("

). Note Ay D A3 D Ay C ..., because [, restricted to A, is measure equiva-
Tn—1
lent to p,,,. The function

[e.e]
M =" xa,
n=1

where A; = K, is called the multiplicity function.

At last, this is the classification we are after: a unitary transformation is determined
up to unitary equivalence by this infinite list of decreasing measures (also up to measure
equivalence).

One can check: measure equivalence is a Borel relation. Note that if ¢ and v are finite
measures on some (standard Borel) space (X, ), then

oL v<= (Ve>0)(30>0)(VAeB) (vV(A) <d=0d(A) <e)

The map taking (U, z) to u, is also Borel.
v =, < (Vn) (/ 2"dy = (U":E,:E))
K
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This is enough to specify the measure because the polynomials are dense in C'(K). Kechris
says that the following will define the maximal spectral type of U: let (e;,) be an orthonormal
basis for H. Then we have

=1
VR g, = (/K Z"dy = Z 2—k(Unek, ek)>

k=1

1
le. g, =~ Z 2—n,uen.

n=1

I still need to verify that the map U(H) — M is Borel...

0.1 Descriptive results

Note that since the measure equivalence relation on M is Borel, the relation of unitary
equivalence on U(H) is Borel by the spectral theorem. One must check that the above
assignment of measures to a unitary operator is Borel. This means that there can be
no Borel reduction of the conjugacy relation on ergodic transformations to equivalence of
unitary operators (the former being non-Borel by a theorem of Foreman, Rudolph, and
Weiss). On the other hand, Kechris has shown that measure equivalence does reduce to

ergodic isomorphism. That is
(=) <p (229Y),

In their paper [3], Kechris and Sofronidis show that the relation of measure equivalence
on the space P(Y') for Y Polish is turbulent. This means in particular that the relation of
unitary equivalence of unitary transformations is not classifiable by countable structures,
i.e. by object in a Borel S, space.

Spectral measures

Definition. Given a measure space (X, B), and a Hilbert space H, a spectral measure
is a function P : B — B(H) taking projections as values such that

(i) P(0) =0

(iii) For every sequence F1, Fs, . .. of pairwise disjoint sets, we have

P(E1UE2U):iP(En)

n=1

where the convergence is in the sense of the strong topology on B(H).



Now, given a normal operator N : ‘H — H, there is a natural way to define a spec-
tral measure. There is a Borel functional calculus for N; that is there is a representation
7w : B(o(N)) — B(H) which extends the usual continuous functional calculus for normal
operators (the latter is itself a consequence of the general fact that a commutative C* al-
gebra is *—isomorphic to the continuous functions on its Gelfand spectrum - see [1]). Now,
define P(F) = xg(N).

The spectral theorem for unitary operators appearing in [2| generalizes the case for
Z. For locally compact group G, the character group of G, denoted G* (or G), is the
collection of continuous homomorphisms from G into S' with the topology of compact con-
vergence (equivalently pointwise convergence?). Note that if G is discrete, the characters
are simply homorphisms; but being a homomorphism is a closed condition on (S1)¢ with
the product topology (pointwise convergence). Thus G* is compact (assuming the topology
is indeed pointwise convergence).

Note: if the Fourier coefficients of a sequence of measures on S' converges (pointwise
on Z), then the measures converge weakly to some measure on the circle (see Rudin on
Katznelson, Helson, etc. . .).
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