Spectral Measures, the Spectral Theorem, and Ergodic Theory

Sam Ziegler

The spectral theorem for unitary operators

The presentation given here largely follows [4]. K will refer to the unit circle throughout.
Recall that a measure preserving automorphism (m.p.a.) T on a Borel probability space (X, \mathcal{B}, μ) gives rise to a unitary map on $L^{2}(X, \mu)$ via $f \rightarrow f \circ T$. Call this map U_{T}. It is natural to ask if the spectral properties of U_{T} says something about T as an m.p.a. Before delving into this relationship, let's discuss some facts about unitary operators and the spectral theorem.

Motivation: given a unitary (even normal) operator U on a finite dimensional Hilbert space H, we can find $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ complex numbers, and mutually orthogonal subspaces H_{1}, \ldots, H_{k} such that

$$
H=\bigoplus_{i=1}^{k} H_{i}
$$

and

$$
U=\bigoplus_{i=1}^{k} \lambda_{i} P_{i}
$$

where P_{i} is the projection onto H_{i}.
Or: if H is n-dimensional, let X be a set of size n with counting measure μ. Then $L^{2}(X, \mu)$ is just \mathbb{C}^{n}, and fin. dim. spectral theorem says that U acts on $L^{2}(X, \mu)$ via

$$
U(g)(x)=f(x) g(x)
$$

where $f(x)$ runs through the eigenvalues of U as x runs through the finite set X. All the spectral theorem for normal operators does is extend this to infinite dimensional H, where X will now be a non-trivial measure space (i.e. $\sigma(U) \subseteq \mathbb{C}$).

We could consider both the strong and weak topology on $U(\mathcal{H})$. In fact, these topologies agree. Consider a sequence $\left(U_{n}\right)$ converging weakly to U. So for any $\xi \in \mathcal{H}$ we have

$$
\left(U_{n} \xi, U \xi\right) \rightarrow(U \xi, U \xi)=\|U \xi\|^{2}
$$

so that

$$
\left(U_{n} \xi-U \xi, U_{n} \xi-U \xi\right)=\left\|U_{n} \xi\right\|^{2}+\|U \xi\|^{2}-2 \operatorname{Re}\left(U_{n} \xi, U \xi\right) \rightarrow 0
$$

using the fact that U_{n} and U preserve norm. So weak convergence implies strong convergence.

Definition. We say that a sequence of complex numbers $\left\{r_{n}\right\}$ is positive definite if for all sequences $\left\{a_{n}\right\}$ and all nonnegative integers N,

$$
\sum_{n, m=0}^{N} r_{n-m} a_{n} \bar{a}_{m} \geq 0
$$

Notice that if U is a unitary operator on a Hilbert space H, and $x \in H$, then the sequence $r_{n}=\left(U^{n} x, x\right)$ is a positive definite sequence. For

$$
\begin{aligned}
\sum_{n, m=0}^{N}\left(U^{n-m} x, x\right) a_{n} \bar{a}_{m} & =\sum_{n, m=0}^{N}\left(U^{n} x, U^{m} x\right) a_{n} \bar{a}_{m} \\
& =\left(\sum_{i=0}^{N} a_{i} U^{i} x, \sum_{i=0}^{N} a_{i} U^{i} x\right) \geq 0
\end{aligned}
$$

Theorem (Herglotz). If $\left\{r_{n}\right\}$ is a positive definite sequence then there is a unique finite, non-negative measure μ on the circle (or $[0,1$) such that

$$
r_{n}=\int_{K} z^{n} d \mu
$$

That is, the $\left\{r_{n}\right\}$ are the fourier coefficients of the measure.
(sidenote: when it comes to providing spectral measures for the transformations U_{T}, there is a more direct way to do it than use Herglotz's theorem.)

The proof uses the following facts: positive definite sequences are bounded, z^{n} has integral 0 around the unit circle for $n \neq 0$, with respect to Lebesgue measure, and the polynomials $p(z)$ are dense in the space of continuous functions. Along with the Riesz-Markov representation theorem and a couple algebraic maneuvers, this gives us the existence part of this theorem.

Also note, knowing $\int_{K} z^{n} d \mu$ for all $n \in \mathbb{Z}$ completely determines μ as a member of $C(K)^{*}$, since the polynomials are dense in this space.

Theorem (Wiener). Let μ be a finite Borel measure defined on K. If H is a closed subspace of $L^{2}(K, \mu)$ such that H is invariant under the map $f(z) \mapsto z f(z)$, then H is necessarily of the form

$$
H=\chi_{B} L^{2}(K, \mu)=\left\{f \in L^{2}(K, \mu): \operatorname{supp} f \subset B\right\}
$$

Let U be a unitary operator on H and let $x \in H$. Then let $Z(x)$ be the closed linear span of the set $\left\{U^{n} x: n \in \mathbb{Z}\right\}$. So $Z(x)$ is what we call a cyclic subspace of H with respect to U, with cyclic-vector $x . Z(x)$ is a reducing subspace for U (noting that $Z(x)$ is invariant under both U and $U^{-1}=U^{*}$). Also, let μ_{x} be the measure we get from Hergoltz's theorem.
(Aside: not every invariant subspace for a unitary map is reducing. Consider U : $\ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ the right shift. Let $M=\left\{x \in \ell^{2}(\mathbb{Z}): x(n)=0\right.$ for $\left.n \leq 0\right\}$. Then M is U invariant but not reducing.)

Claim. $U \mid Z(x)$ is unitarily equivalent to the map $V_{x}: L^{2}\left(K, \mu_{x}\right) \rightarrow L^{2}\left(K, \mu_{x}\right)$ defined by $\left(V_{x} f\right)(z)=z f(z)$.

That is, on the cyclic subspace $Z(x), U$ behaves just like a multiplication operator; indeed, multiplication by the identity function.
(sketch). Just define W on the set $\left\{U^{n} x\right\}$ by $W\left(U^{n} x\right)=z^{n}$. Then by defnition this is inner product preserving. Now extend to linear combinations and take closures to get an isometry onto $L^{2}\left(K, \mu_{x}\right)$, as the polynomial functions are sup-norm dense in $C(K)$, and furthermore, the continuous functions are dense in $L^{2}\left(K, \mu_{x}\right)$.

As a result of this construction, we get a correspondence between cyclic subspaces and measures on K. There are various properties to prove. For example, $U|Z(x) \approx U| Z(y)$ (unitarily equivalent) iff $\mu_{x} \approx \mu_{y}$. By the above it suffices to show $V_{x} \approx V_{y}$ iff $\mu_{x} \approx \mu_{y}$. But if $W V_{x}=V_{y} W$ for some unitary W, let $f(z)$ be the function $W(1)$, where 1 is the constant function of $L^{2}\left(K, \mu_{x}\right)$. Then $W V_{x}^{n} 1=V_{y}^{n} f$, which is to say $W\left(z^{n}\right)=f(z) z^{n}$. So by density considerations, $W(g)=f \cdot g$ for all $g \in L^{2}\left(K, \mu_{x}\right)$. But W is an isometry, so given $B \subset K$ measurable we have

$$
\mu_{x}(B)=\int_{K}\left|\chi_{B}\right|^{2} d \mu_{x}=\int_{K}|f|^{2}\left|\chi_{B}\right|^{2} d \mu_{y}=\int_{B}|f|^{2} d \mu_{y}
$$

therefore $\mu_{x} \ll \mu_{y}$. By symmetry $\mu_{x} \approx \mu_{y}$.
On the other hand if $\mu_{x} \approx \mu_{y}$ then we can define an isometry by $g \in L^{2}\left(K, \mu_{x}\right) \rightarrow$ $g\left(\frac{d \mu_{x}}{d \mu_{y}}\right)^{\frac{1}{2}}$.

There are several other facts one needs to check in order to prove the theorem but I omit them for the sake of brevity.

If U is a unitary operator on a separable Hilbert space H, then there exists a maximal cyclic subspace. Indeed, for any $x \in H$ there is a maximal cyclic subspace containing x.

Claim. If U_{i} are unitary operators on this Hilbert spaces H_{i} such that $U_{1} \approx U_{2}$ and $U_{1}\left|Z(x) \approx U_{2}\right| Z(y)$ then $U_{1}\left|Z(x)^{\perp} \approx U_{2}\right| Z(y)^{\perp}$.

Proof omitted for now.
Finally, let $\left\{e_{n}\right\}$ be an orthonormal basis for H. Let $Z\left(x_{1}\right)$ be a cyclic subspace containing e_{1}. Let $Z\left(x_{2}\right)$ be a maximal cyclic subspace of $Z\left(x_{1}\right)^{\perp}$ containing $\left(I-P_{1}\right) e_{2}$, the projection of e_{2} onto $Z\left(x_{1}\right)^{\perp}$. Note $e_{1} \in Z\left(x_{1}\right), e_{2} \in Z\left(x_{1}\right) \oplus Z\left(x_{2}\right)$. Repeating this for all n, we get $e_{n} \in Z\left(x_{1}\right) \oplus Z\left(x_{2}\right) \oplus \ldots \oplus Z\left(x_{n}\right)$ and, since the e_{n} span the space, we get

$$
H=\sum_{n} \bigoplus_{i<n} Z\left(x_{i}\right)
$$

By maximality, we have $\mu_{x_{1}} \succeq \mu_{x_{2}} \succeq \ldots$ This is because if $x, y \in H$ and $\mu_{x} \perp \mu_{y}$, then $Z(x+y)=Z(x) \oplus Z(y)$, and so if $Z(x)$ is maximal, for any $y \neq 0$, we must have $y \nsucceq x$. This means $y \preceq x$ for all y (measures split into absolutely continuous and perpendicular components.)

Now note: since we are only concerned about the identity of these measures up to measure equivalence, the above data can be summarized by providing $\mu_{x_{1}}$ and $A_{n}=$ $\operatorname{supp}\left(\frac{d \mu_{x_{n}}}{d \mu_{x_{n-1}}}\right)$. Note $A_{2} \supseteq A_{3} \supseteq A_{4} \subseteq \ldots$, because $\mu_{x_{1}}$ restricted to A_{n} is measure equivalent to $\mu_{x_{n}}$. The function

$$
M=\sum_{n=1}^{\infty} \chi_{A_{n}}
$$

where $A_{1}=K$, is called the multiplicity function.
At last, this is the classification we are after: a unitary transformation is determined up to unitary equivalence by this infinite list of decreasing measures (also up to measure equivalence).

One can check: measure equivalence is a Borel relation. Note that if σ and ν are finite measures on some (standard Borel) space (X, \mathcal{B}), then

$$
\sigma \ll \nu \Longleftrightarrow(\forall \epsilon>0)(\exists \delta>0)(\forall A \in \mathcal{B})(\nu(A)<\delta \Rightarrow \sigma(A)<\epsilon)
$$

The map taking (U, x) to μ_{x} is also Borel.

$$
\nu=\mu_{x} \Longleftrightarrow(\forall n)\left(\int_{K} z^{n} d \nu=\left(U^{n} x, x\right)\right)
$$

This is enough to specify the measure because the polynomials are dense in $C(K)$. Kechris says that the following will define the maximal spectral type of U : let $\left(e_{n}\right)$ be an orthonormal basis for H. Then we have

$$
\nu \approx \mu_{x_{1}} \Longleftrightarrow\left(\int_{K} z^{n} d \nu=\sum_{k=1}^{\infty} \frac{1}{2^{k}}\left(U^{n} e_{k}, e_{k}\right)\right)
$$

i.e. $\mu_{x_{1}} \approx \sum_{n=1}^{\infty} \frac{1}{2^{n}} \mu_{e_{n}}$.

I still need to verify that the map $U(H) \rightarrow \mathcal{M}^{\omega}$ is Borel...

0.1 Descriptive results

Note that since the measure equivalence relation on \mathcal{M} is Borel, the relation of unitary equivalence on $U(H)$ is Borel by the spectral theorem. One must check that the above assignment of measures to a unitary operator is Borel. This means that there can be no Borel reduction of the conjugacy relation on ergodic transformations to equivalence of unitary operators (the former being non-Borel by a theorem of Foreman, Rudolph, and Weiss). On the other hand, Kechris has shown that measure equivalence does reduce to ergodic isomorphism. That is

$$
\left(\cong \cong^{u}\right)<_{B}(\cong \mathrm{mpt}) .
$$

In their paper [3], Kechris and Sofronidis show that the relation of measure equivalence on the space $P(Y)$ for Y Polish is turbulent. This means in particular that the relation of unitary equivalence of unitary transformations is not classifiable by countable structures, i.e. by object in a Borel S_{∞} space.

Spectral measures

Definition. Given a measure space (X, \mathcal{B}), and a Hilbert space \mathcal{H}, a spectral measure is a function $P: \mathcal{B} \rightarrow \mathcal{B}(\mathcal{H})$ taking projections as values such that
(i) $P(\emptyset)=0$
(ii) $P(X)=1_{\mathcal{H}}$
(iii) For every sequence E_{1}, E_{2}, \ldots of pairwise disjoint sets, we have

$$
P\left(E_{1} \cup E_{2} \cup \ldots\right)=\sum_{n=1}^{\infty} P\left(E_{n}\right)
$$

where the convergence is in the sense of the strong topology on $\mathcal{B}(\mathcal{H})$.

Now, given a normal operator $N: \mathcal{H} \rightarrow \mathcal{H}$, there is a natural way to define a spectral measure. There is a Borel functional calculus for N; that is there is a representation $\pi: B(\sigma(N)) \rightarrow \mathcal{B}(\mathcal{H})$ which extends the usual continuous functional calculus for normal operators (the latter is itself a consequence of the general fact that a commutative C^{*} algebra is $*$-isomorphic to the continuous functions on its Gelfand spectrum - see [1]). Now, define $P(E)=\chi_{E}(N)$.

The spectral theorem for unitary operators appearing in [2] generalizes the case for \mathbb{Z}. For locally compact group G, the character group of G, denoted G^{*} (or \widehat{G}), is the collection of continuous homomorphisms from G into S^{1} with the topology of compact convergence (equivalently pointwise convergence?). Note that if G is discrete, the characters are simply homorphisms; but being a homomorphism is a closed condition on $\left(S^{1}\right)^{G}$ with the product topology (pointwise convergence). Thus G^{*} is compact (assuming the topology is indeed pointwise convergence).

Note: if the Fourier coefficients of a sequence of measures on S^{1} converges (pointwise on \mathbb{Z}), then the measures converge weakly to some measure on the circle (see Rudin on Katznelson, Helson, etc...).

References

[1] W. Arveson, A short course on spectral theory. Springer-Verlag, New York, 2002
[2] A. Katok and J-P Thouvenot, "Spectral properties and combinatorial constructions in ergodic theory." Chapter 11, Handbook of Dynamical Systems
[3] A. Kechris and N. Sofronidis "A strong generic ergodicity property of unitary and selfadjoint operators." Ergod. Th. \& Dynam. Sys. (2001), 21
[4] W. Parry Topics in ergodic theory Cambridge University Press, Cambridge, UK, 1981

