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The spectral theorem for unitary operators

The presentation given here largely follows [4]. K will refer to the unit circle throughout.

Recall that a measure preserving automorphism (m.p.a.) T on a Borel probability space
(X,B, µ) gives rise to a unitary map on L2(X, µ) via f → f ◦ T . Call this map UT . It is
natural to ask if the spectral properties of UT says something about T as an m.p.a. Be-
fore delving into this relationship, let’s discuss some facts about unitary operators and the
spectral theorem.

Motivation: given a unitary (even normal) operator U on a finite dimensional Hilbert
space H , we can find λ1, λ2, . . . , λk complex numbers, and mutually orthogonal subspaces
H1, . . . , Hk such that

H =
k⊕

i=1

Hi

and

U =
k⊕

i=1

λiPi

where Pi is the projection onto Hi.

Or: if H is n-dimensional, let X be a set of size n with counting measure µ. Then
L2(X, µ) is just Cn, and fin. dim. spectral theorem says that U acts on L2(X, µ) via

U(g)(x) = f(x)g(x)

where f(x) runs through the eigenvalues of U as x runs through the finite set X . All the
spectral theorem for normal operators does is extend this to infinite dimensional H , where
X will now be a non-trivial measure space (i.e. σ(U) ⊆ C).

We could consider both the strong and weak topology on U(H). In fact, these topologies
agree. Consider a sequence (Un) converging weakly to U . So for any ξ ∈ H we have

(Unξ, Uξ) → (Uξ, Uξ) = ||Uξ||2
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so that
(Unξ − Uξ, Unξ − Uξ) = ||Unξ||2 + ||Uξ||2 − 2Re(Unξ, Uξ) → 0

using the fact that Un and U preserve norm. So weak convergence implies strong conver-
gence.

Definition. We say that a sequence of complex numbers {rn} is positive definite if for
all sequences {an} and all nonnegative integers N ,

N∑

n,m=0

rn−manam ≥ 0

Notice that if U is a unitary operator on a Hilbert space H , and x ∈ H , then the
sequence rn = (Unx, x) is a positive definite sequence. For

N∑

n,m=0

(Un−mx, x)anam =
N∑

n,m=0

(Unx, Umx)anam

= (
N∑

i=0

aiU
ix,

N∑

i=0

aiU
ix) ≥ 0

Theorem (Herglotz). If {rn} is a positive definite sequence then there is a unique finite,
non-negative measure µ on the circle (or [0, 1) such that

rn =
∫

K
zndµ

That is, the {rn} are the fourier coefficients of the measure.

(sidenote: when it comes to providing spectral measures for the transformations UT ,
there is a more direct way to do it than use Herglotz’s theorem.)

The proof uses the following facts: positive definite sequences are bounded, zn has
integral 0 around the unit circle for n 6= 0, with respect to Lebesgue measure, and the poly-
nomials p(z) are dense in the space of continuous functions. Along with the Riesz-Markov
representation theorem and a couple algebraic maneuvers, this gives us the existence part
of this theorem.

Also note, knowing
∫

K
zndµ for all n ∈ Z completely determines µ as a member of

C(K)∗, since the polynomials are dense in this space.
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Theorem (Wiener). Let µ be a finite Borel measure defined on K. If H is a closed
subspace of L2(K, µ) such that H is invariant under the map f(z) 7→ zf(z), then H is
necessarily of the form

H = χBL2(K, µ) = {f ∈ L2(K, µ) : supp f ⊂ B}

Let U be a unitary operator on H and let x ∈ H . Then let Z(x) be the closed linear
span of the set {Unx : n ∈ Z}. So Z(x) is what we call a cyclic subspace of H with respect
to U , with cyclic-vector x. Z(x) is a reducing subspace for U (noting that Z(x) is invariant
under both U and U−1 = U∗). Also, let µx be the measure we get from Hergoltz’s theorem.

(Aside: not every invariant subspace for a unitary map is reducing. Consider U :
`2(Z) → `2(Z) the right shift. Let M = {x ∈ `2(Z) : x(n) = 0 for n ≤ 0}. Then M is U

invariant but not reducing.)

Claim. U |Z(x) is unitarily equivalent to the map Vx : L2(K, µx) → L2(K, µx) defined by
(Vxf)(z) = zf(z).

That is, on the cyclic subspace Z(x), U behaves just like a multiplication operator;
indeed, multiplication by the identity function.

(sketch). Just define W on the set {Unx} by W (Unx) = zn. Then by defnition this is inner
product preserving. Now extend to linear combinations and take closures to get an isometry
onto L2(K, µx), as the polynomial functions are sup-norm dense in C(K), and furthermore,
the continuous functions are dense in L2(K, µx).

As a result of this construction, we get a correspondence between cyclic subspaces and
measures on K. There are various properties to prove. For example, U |Z(x) ≈ U |Z(y)
(unitarily equivalent) iff µx ≈ µy . By the above it suffices to show Vx ≈ Vy iff µx ≈ µy . But
if WVx = VyW for some unitary W , let f(z) be the function W (1), where 1 is the constant
function of L2(K, µx). Then WV n

x 1 = V n
y f , which is to say W (zn) = f(z)zn. So by density

considerations, W (g) = f · g for all g ∈ L2(K, µx). But W is an isometry, so given B ⊂ K
measurable we have

µx(B) =
∫

K
|χB|2dµx =

∫

K
|f |2|χB |2dµy =

∫

B
|f |2dµy

therefore µx � µy . By symmetry µx ≈ µy .

On the other hand if µx ≈ µy then we can define an isometry by g ∈ L2(K, µx) →

g(
dµx

dµy
)

1
2 .
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There are several other facts one needs to check in order to prove the theorem but I
omit them for the sake of brevity.

If U is a unitary operator on a separable Hilbert space H , then there exists a maxi-
mal cyclic subspace. Indeed, for any x ∈ H there is a maximal cyclic subspace containing x.

Claim. If Ui are unitary operators on this Hilbert spaces Hi such that U1 ≈ U2 and
U1|Z(x) ≈ U2|Z(y) then U1|Z(x)⊥ ≈ U2|Z(y)⊥.

Proof omitted for now.

Finally, let {en} be an orthonormal basis for H . Let Z(x1) be a cyclic subspace con-
taining e1. Let Z(x2) be a maximal cyclic subspace of Z(x1)⊥ containing (I − P1)e2, the
projection of e2 onto Z(x1)⊥. Note e1 ∈ Z(x1), e2 ∈ Z(x1) ⊕ Z(x2). Repeating this for all
n, we get en ∈ Z(x1)⊕ Z(x2) ⊕ . . .⊕ Z(xn) and, since the en span the space, we get

H =
∑

n

⊕

i<n

Z(xi)

By maximality, we have µx1 � µx2 � . . . . This is because if x, y ∈ H and µx ⊥ µy , then
Z(x + y) = Z(x) ⊕ Z(y), and so if Z(x) is maximal, for any y 6= 0, we must have y 6⊥ x.
This means y � x for all y (measures split into absolutely continuous and perpendicular
components.)

Now note: since we are only concerned about the identity of these measures up to
measure equivalence, the above data can be summarized by providing µx1 and An =

supp(
dµxn

dµxn−1

). Note A2 ⊇ A3 ⊇ A4 ⊆ . . ., because µx1 restricted to An is measure equiva-

lent to µxn . The function

M =
∞∑

n=1

χAn

where A1 = K, is called the multiplicity function.
At last, this is the classification we are after: a unitary transformation is determined

up to unitary equivalence by this infinite list of decreasing measures (also up to measure
equivalence).

One can check: measure equivalence is a Borel relation. Note that if σ and ν are finite
measures on some (standard Borel) space (X,B), then

σ � ν ⇐⇒ (∀ε > 0)(∃δ > 0)(∀A ∈ B) (ν(A) < δ ⇒ σ(A) < ε)

The map taking (U, x) to µx is also Borel.

ν = µx ⇐⇒ (∀n)
(∫

K
zndν = (Unx, x)

)
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This is enough to specify the measure because the polynomials are dense in C(K). Kechris
says that the following will define the maximal spectral type of U : let (en) be an orthonormal
basis for H . Then we have

ν ≈ µx1 ⇐⇒

(∫

K
zndν =

∞∑

k=1

1
2k

(Unek, ek)

)

i.e. µx1 ≈
∞∑

n=1

1
2n

µen .

I still need to verify that the map U(H) → Mω is Borel. . .

0.1 Descriptive results

Note that since the measure equivalence relation on M is Borel, the relation of unitary
equivalence on U(H) is Borel by the spectral theorem. One must check that the above
assignment of measures to a unitary operator is Borel. This means that there can be
no Borel reduction of the conjugacy relation on ergodic transformations to equivalence of
unitary operators (the former being non-Borel by a theorem of Foreman, Rudolph, and
Weiss). On the other hand, Kechris has shown that measure equivalence does reduce to
ergodic isomorphism. That is

(∼=u) <B (∼=mpt).

In their paper [3], Kechris and Sofronidis show that the relation of measure equivalence
on the space P (Y ) for Y Polish is turbulent. This means in particular that the relation of
unitary equivalence of unitary transformations is not classifiable by countable structures,
i.e. by object in a Borel S∞ space.

Spectral measures

Definition. Given a measure space (X,B), and a Hilbert space H, a spectral measure
is a function P : B → B(H) taking projections as values such that

(i) P (∅) = 0

(ii) P (X) = 1H

(iii) For every sequence E1, E2, . . . of pairwise disjoint sets, we have

P (E1 ∪ E2 ∪ . . .) =
∞∑

n=1

P (En)

where the convergence is in the sense of the strong topology on B(H).
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Now, given a normal operator N : H → H, there is a natural way to define a spec-
tral measure. There is a Borel functional calculus for N ; that is there is a representation
π : B(σ(N)) → B(H) which extends the usual continuous functional calculus for normal
operators (the latter is itself a consequence of the general fact that a commutative C∗ al-
gebra is ∗−isomorphic to the continuous functions on its Gelfand spectrum - see [1]). Now,
define P (E) = χE(N).

The spectral theorem for unitary operators appearing in [2] generalizes the case for
Z. For locally compact group G, the character group of G, denoted G∗ (or Ĝ), is the
collection of continuous homomorphisms from G into S1 with the topology of compact con-
vergence (equivalently pointwise convergence?). Note that if G is discrete, the characters
are simply homorphisms; but being a homomorphism is a closed condition on (S1)G with
the product topology (pointwise convergence). Thus G∗ is compact (assuming the topology
is indeed pointwise convergence).

Note: if the Fourier coefficients of a sequence of measures on S1 converges (pointwise
on Z), then the measures converge weakly to some measure on the circle (see Rudin on
Katznelson, Helson, etc. . . ).
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