Discrete metric spaces: structure and enumeration

Caroline Terry

UIC

Lake Michigan Combinatorics Workshop

Notation: Given $n \in \mathbb{N}$, $[n] = \{1, ..., n\}$. K_n = the complete graph on n vertices.

Definition

Fix a finite graph H and integer n. Define $Forb_n(H)$ to be the set of graphs G with the following properties:

- V(G) = [n] and
- G omits H as a (non-induced) subgraph.

Definition

Given $l \ge 2$, $Col_n(l)$ is the set of l-colorable graphs with vertex set [n].

Recall for all $l \ge 2$ and n, $Col_n(l) \subseteq Forb_n(K_{l+1})$.

Case $H = K_3$:

Theorem (Erdős, Kleitman, Rothschild, 1976)

Structure:

$$\lim_{n\to\infty}\frac{|\text{Col}_n(2)|}{|\text{Forb}_n(K_3)|}=1.$$

② Enumeration:

$$|Forb_n(K_3)| = \left(1 + o\left(\frac{1}{n}\right)\right)|Col_2(n)| = 2^{\left(\frac{1}{2}\right)\frac{n^2}{2} + o(n^2)}.$$

There are many extensions and generalizations of this to other families of the form $Forb_n(H)$:

Theorem (Kolaitis, Prömel, Rothschild, 1987)

Fix $H = K_{l+1}$ for $l \ge 2$.

Structure:

$$\lim_{n\to\infty}\frac{|\textit{Col}_n(\textit{I})|}{|\textit{Forb}_n(\textit{K}_{\textit{I}+1})|}=1.$$

2 Enumeration: for any $p \ge 1$,

$$|Forb_n(K_{l+1})| = \left(1 + o\left(\frac{1}{n^p}\right)\right)|Col_n(I)| = 2^{\left(1 - \frac{1}{I}\right)\frac{n^2}{2} + o(1)}.$$

Theorem (Prömel, Steger, 1992)

Suppose $I \ge 2$. Suppose H has $\chi(H) = I + 1$ and contains a color-critical edge.

Structure:

$$\lim_{n\to\infty}\frac{|\textit{Col}_n(\textit{I})|}{|\textit{Forb}_n(\textit{H})|}=1.$$

2 Enumeration: for any $p \ge 1$,

$$|Forb_n(H)| = \left(1 + o\left(\frac{1}{n^p}\right)\right)|Col_n(I)| = 2^{\left(1 - \frac{1}{I}\right)\frac{n^2}{2} + o(1)}.$$

Metric spaces

Definition

Fix an integer $r \ge 2$. $M_r(n)$ is the set of metric spaces with underlying set [n] and distances all in [r].

Given a set X, $\binom{X}{2} = \{Y \subseteq X : |Y| = 2\}$.

Definition

Fix an integer $r \ge 2$. A simple complete r-graph is a pair (V, c) where V is a set of vertices and $c : \binom{V}{2} \to [r]$ is a function. c is called a *coloring*.

Elements $G \in M_r(n)$ are naturally simple complete r-graphs: just color edges xy with the distance d(x, y).

Analogy

Definition

• A violating triangle is an r-graph H = (V, c) with $V = \{x, y, z\}$ such that for some $i, j, k \in [r]$, with i > j + k,

$$c(x,y) = i$$
, $c(x,z) = j$, and $c(y,z) = k$.

• Given two r-graphs G and H, G omits H, if for all injections $f: V(H) \to V(G)$, there is $xy \in \binom{V(H)}{2}$ such that $c^H(x,y) \neq c^G(f(x),f(y))$.

Observation:

 $M_r(n)$ is the set of all simple and complete r-graphs G such that

- V(G) = [n],
- G omits all violating triangles.

Questions

Questions

- Given a fixed r, what is the asymptotic structure of elements of M_r(n)?
- $|M_r(n)| = ???$

Metric sets

Definition

 $A \subseteq [r]$ is a *metric set* if for all $a, b, c \in A$, $a \le b + c$.

Notation: Given $s < r \in \mathbb{N}$, $[s, r] = \{s, s + 1, \dots, r\}$.

Lemma (Mubayi, T.)

- When $r \ge 2$ is even, $[\frac{r}{2}, r]$ is a unique largest metric subset of [r].
- When $r \ge 3$ is odd, $[\frac{r-1}{2}, r-1]$, $[\frac{r+1}{2}, r]$ are the two largest metric subsets of [r].

Example

If r = 4, $\{2, 3, 4\}$ is the unique largest metric subset of [r].

If r = 5, $\{2,3,4\}$ and $\{3,4,5\}$ are the two largest metric subsets of [r].

When *r* is odd, let $U_r = [\frac{r+1}{2}, r]$ and $L_r = [\frac{r-1}{2}, r-1]$.

$C_r(n)$

We now define a special subfamily $C_r(n) \subseteq M_r(n)$. Idea: $C_r(n)$ contains only distances in the "top half" of [r].

Definition

When r is even, $C_r(n) = \{G \in M_r(n) : \text{for all } a, b \in G, d(a,b) \in [\frac{r}{2},r]\}.$

Example

When r is 4, this is the set of metric spaces on [n] with all distances in $\{2,3,4\}$.

Definition

When r is odd, $C_r(n)$ is the set of all $G \in M_r(n)$ with the following property. There is a partition P_1, \ldots, P_l of [n] such that

- For all i and $ab \in \binom{P_i}{2}$, $d(a,b) \in L_r$.
- For all $i \neq j$, $(a, b) \in P_i \times P_i$, $d(a, b) \in U_r$.

$C_r(n)$

For example, when r = 5, an element of $C_r(n)$ could look like:

Counting $C_r(n)$

Observation:

When *r* is even $|[\frac{r}{2}, r]| = \lceil \frac{r+1}{2} \rceil$.

When r is odd, $|L_r| = |U_r| = \lceil \frac{r+1}{2} \rceil$.

When $r \ge 2$ is even,

$$|C_r(n)| = \left|\left[\frac{r}{2}, r\right]\right|^{\binom{n}{2}} = \left\lceil\frac{r+1}{2}\right\rceil^{\binom{n}{2}}.$$

When $r \geq 3$ is odd,

$$\left\lceil \frac{r+1}{2} \right\rceil^{\binom{n}{2}} \leq |C_r(n)| \leq n^n \left\lceil \frac{r+1}{2} \right\rceil^{\binom{n}{2}} = \left\lceil \frac{r+1}{2} \right\rceil^{\binom{n}{2}+o(n^2)}.$$

Questions

Questions

- Given a fixed r, what is the asymptotic structure of elements of M_r(n)?
- $|M_r(n)| = ???$

Approximate structure

Definition

Given $\delta > 0$ and two elements $G, G' \in M_r(n)$, we say G and G' are δ -close if

$$\left|\left\{ab\in {[n]\choose 2}: d^G(a,b)
eq d^{G'}(a,b)
ight\}
ight|\leq \delta n^2.$$

Theorem (Mubayi, T.)

For all $r \ge 2$ and $\delta > 0$,

$$\lim_{n\to\infty}\frac{\{G\in M_r(n): G \text{ is } \delta\text{-close to an element of } C_r(n)\}|}{|M_r(n)|}=1.$$

Proof uses multi-color version of Szemeredi's regularity lemma and a stability theorem.

Counting

Corollary (Mubayi, T.)

For all $r \ge 2$,

$$|M_r(n)| = \left\lceil \frac{r+1}{2} \right\rceil^{\binom{n}{2}+o(n^2)}.$$

The even case

Theorem (Mubayi, T.)

When r is even,

$$\lim_{n\to\infty}\frac{|C_r(n)|}{|M_r(n)|}=1.$$

Corollary (Mubayi, T.)

When r > 2 is even

$$|M_r(n)| = (1 + o(1))|C_r(n)| = \left\lceil \frac{r+1}{2} \right\rceil^{\binom{n}{2} + o(1)}$$

The odd case

Theorem (Mubayi, T.)

When $r \geq 3$ is odd,

$$\lim_{n\to\infty}\frac{|C_r(n)|}{|M_r(n)|}<1.$$

Moreover,

$$|M_r(n)| \ge \left\lceil \frac{r+1}{2} \right\rceil^{\binom{n}{2} + \Omega(n \log n)}$$

Open questions

When r is odd:

- What is the fine structure of $M_r(n)$?
- $\bullet |M_r(n)| = \lceil \frac{r+1}{2} \rceil^{\binom{n}{2} + ???}.$
- What is different about the even and odd cases?

Thank you for listening!