Show all work in your exam book then record answers in the space provided on this test paper. Use 4 digit \textit{round} exam precision.

1. (a) What is the machine epsilon \(\epsilon \) for a floating point number system with \(B = 10 \), precision \(t = 4 \), and the exponent range \(L = -5 \) and \(U = 5 \).

(b) Define \textbf{Relative roundoff error} and show how it is related to \(\epsilon \).

(c) What is the smallest normalized floating point number in this system?

2. Secant Method:

(a) State the \textbf{Secant Method Algorithm}.

(b) Explain why it is preferable to use the secant method instead of Newton’s method.

(c) Use the \textit{Secant method} starting with \(x_1 = 0 \) and \(x_2 = 1 \), with \(|x_{k+1} - x_k| < 0.03 \) as a stopping criterion, to find a root of

\[f(x) = e^x - 4x^3 \]

\textbf{Algorithm:}

<table>
<thead>
<tr>
<th>(k)</th>
<th>(x_k)</th>
<th>(x_{k+1})</th>
<th>(f(x_k))</th>
<th>(f(x_{k+1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Consider \(f(x) = 0 \) with a triple root at \(x = r \).

(a) Give conditions for \(f(x) \) to have a triple root a \(x = r \).

(b) At what rate does the Newton-Raphson algorithm converge to the triple root at \(x = r \). Justify your answer. (Use exam book or back of this sheet.)
4. Solve

\[
\begin{align*}
4.000x_1 + 10.00x_2 + 6.000x_3 &= 10.00 \\
2.000x_1 + 8.000x_2 + 1.000x_3 &= 100.0 \\
12.00x_1 + 16.00x_2 + 12.00x_3 &= 0.1000
\end{align*}
\]

Use Gaussian elimination, \textbf{virtual} partial pivoting and \textbf{virtual} scaling. Record the pivot vector and scale vectors at each step. Write the final augmented matrix with the multipliers (circled) stored in place of zeros. Give the final solution, the determinant and an LU decomposition.

\[
\text{pivot vector } = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} \\ \end{bmatrix}, \begin{bmatrix} \\ \end{bmatrix}
\]

\[
\text{scale vector } = \begin{bmatrix} \\ \end{bmatrix}, \begin{bmatrix} \\ \end{bmatrix}
\]

Final Augmented Matrix:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solutions:

\[
x_1 = \underline{}, \quad x_2 = \underline{}
\]

\[
x_3 = \underline{}, \quad \text{det}(A) = \underline{}
\]

\[
L = \begin{bmatrix} \\ \end{bmatrix}, \quad U = \begin{bmatrix} \\ \end{bmatrix}
\]

5. (a) What is a sufficient condition for the Gauss-Seidel iteration for \(Ax = b\) to converge to the solution \(x\)?

(b) Give a Gauss-Seidel algorithm for the system below that is guaranteed to converge to the solution.

\[
\begin{align*}
4x - 8y + z &= -21 \\
-2x + y + 5z &= 15 \\
4x - y - z &= 7
\end{align*}
\]