Math 584 - Applied Stochastic Models - C. Tier - Fall 2005

Homework - 2

1. Consider a discrete-state Markov chain with transition matrix

\[A = \begin{pmatrix} 1/2 & 1/2 \\ 3/4 & 1/4 \end{pmatrix} \]

(a) Find the equilibrium state vector \(\vec{\pi} \) directly, if it exists.

(b) Find an explicit form for \(A^n \).

(c) Is it true that \(\lim_{n \to \infty} \vec{p}(0) A^n = \vec{\pi} \)?

2. Let \(A \) be an \(n \times n \) stochastic matrix. Show that the eigenvalue problems \(wA = \lambda w \) and \(Ax = \lambda x \) have the same eigenvalues but it not in general true that \(w^T = x \). For what type of matrix \(A \) are the eigenvectors transposes of each other?

3. A Markov chain with state-space \(\{0,1,2\} \) has transition matrix

\[A = \begin{pmatrix} .4 & .2 & .4 \\ .6 & 0 & .4 \\ .2 & .5 & .3 \end{pmatrix} \]

(a) Sketch the transition diagram.

(b) Based on the transition diagram can you conclude that \(A \) is irreducible and aperiodic.

You might use the Perron-Frobenius theory to make the same conclusion.

(c) Use Matlab or Maple to compute \(A^{15} \).

(d) Find the equilibrium state vector \(\vec{\pi} \) directly, if it exists. Is the result consistent with (c)?

4. Let \(X(n) \) be the location of a random walk on the state-space \(S = \{0, 1, \ldots, N\} \). The state 0 is absorbing and the state \(N \) is reflecting. At the states \(1, \ldots, N - 1 \), the random walk can jump left with probability \(l \) or jump right with probability \(r \), where \(r + l = 1 \).

(a) Draw the transition diagram and state the transition matrix \(A \).

(b) Find the equilibrium solution, if possible.

(c) Let \(u_k = \Pr[X(n^*) = 0 | X(0) = k] \). Derive a problem for \(u_k \) involving the backward equation and solve it. Here \(n^* \) is the first time (first passage time) that \(X \) reaches 0.

(d) Let \(T_k = E[n^* | X(0) = k] \). Derive a problem for \(T_k \) involving the backward equation and solve it. Here \(T_k \) is referred to as the mean first passage time.