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Abstract

A queueing system (M/G1,G2/1/ ) is considered in which the service time of a customer
entering service depends on whether the queue length, , is above or below a threshold
. The arrival process is Poisson and the general service times 1 and 2 depend on whether
the queue length at the time service is initiated is or , respectively. Balance
equations are given for the stationary probabilities of the Markov process where

is the remaining service time of the customer currently in service. Exact solutions for the
stationary probabilities are constructed for both infinite andfinite capacity systems. Asymptotic
approximations of the solutions are given, which yield simple formulas for performance
measures such as loss rates and tail probabilities. The numerical accuracy of the asymptotic
results is tested.
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1 Introduction

1.1 Background

Queueing systems arise in a wide variety of applications such as computer systems and communi-
cation networks. A queueing system is a mathematical model to characterize the system, in which
the arrivals and the service of customers (users, packets or cells) occur randomly. The customers
arrive at the facility and wait in the queue (or buffer) if the server is not available. If there are many
customers in the queue, they may suffer long delays which cause poor system performance. Thus,
the arrival rate or the service rate may need to be controlled to reduce the delays. These systemsmay
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be represented by queueing systems with queue-length-dependent arrival rates or service times.
That is, if the queue length exceeds a threshold value, the arrival rate may be reduced (e.g. overload
control), or the service rate may be increased (e.g. the cell discarding scheme [2]). Many schemes
of traffic control in ATM (asynchronous transfer mode) networks have been analyzed using such
threshold-based queueing systems ([2],[5],[8]-[12]).

In this paper, we analyze a queueing system with queue-length-dependent service times.
Customers arrive at the queue by a Poisson process, and there is only one server. The service times
of customers depend on the queue length. Concretely, we specify a threshold value for the queue.
If the queue length at service initiation of a customer is less than the threshold (respectively,
greater than or equal to the threshold ), the service time of the customer follows a distributionwith
probability density function 1 (respectively, 2 ). We believe that our analysis can be extended
to the case of multiple thresholds. Both infinite (M/G1,G2/1) and finite capacity (M/G1,G2/1/ )
queues are considered.

The analysis of this queueing system was directly motivated by the cell-discarding scheme
for voice packets in ATM networks (see [2, 9, 11]). In [11], a system with deterministic service
times was proposed, in which voice packets are divided into high and low priority ATM cells. The
cells arrive as a concatenated pair (i.e. two cells per arrival) and the threshold and the capacity
are measured in terms of cell pairs. The cell discarding occurs at the output of the queue and

immediately prior to transmission, based upon the total number of cell pairs in the queue. If this
number is less then then the next pair of cells is transmitted (no cells are discarded). However, if
the queue length is greater than or equal to then only the high priority cell is transmitted. Thus,
the low priority cell is discarded. The analysis in [11] is based on numerically solving an embedded
chain formulation of the problem. The system is studied only at service time completions. Our
results, when specialized to G = D (deterministic service), are directly applicable to this model.

We analyze this queueing systemusing the supplementary variablemethod. Wefirst consider
the case of an infinite capacity queue, and obtain an explicit formula for the steady-state queue
length distribution . When the service times have different exponential distributions, the queue
length distribution has a simple, closed form. We also compute asymptotic approximations to the
queue length distribution for various choices of the system parameters. Next, we examine the
finite capacity queue, and again obtain explicit expressions for and in particular the probability

that the queue is full and the probability 0 that it is empty. Also, we investigate asymptotic
approximations for the queue length distribution for large values of the threshold and the queue
capacity . We show that this queueing system has very different tail behavior (and hence loss
probability) than other 1 type models, and that the service tails can sometime determine the
tail of the queue length.

There has been some previous analytical work on queueing systems with queue-length-
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dependent service times [1, 3, 4, 6, 7]. C. M. Harris [6] considered the 1 queue with
queue-length-dependent service times. In particular, if there are customers in the queue, the
service time of the customer starting service has a general distribution depending on . By using the
embedded Markov chain method, C. M. Harris [6] derived the probability generating function for
the queue length at the departure epochs. However, the obtained probability generating function
contains infinitely many unknown constants. A closed form was obtained only for some special
service times of two types. Fakinos [4] analyzed the 1 queue in which the service discipline
is last-come first-served and the service time depends on the queue length at the arrival epoch of
each customer. Abolnikov, Dshalalow and Dukhovny [1] considered queues with bulk arrivals
(i.e. compound Poisson input) and state-dependent arrivals and service. Assuming that the state-
dependence applies only when the queue length is below a critical level, the authors characterize
the generating function (for both transient and steady-state cases) of the queue length probabilities
in terms of the roots of a certain equation. Ivnitskiy [7] also considers a model with bulk, state-
dependent arrivals and state-dependent service. Using the supplementary variable method, he
obtains a recursion relation for the Laplace transforms of the transient queue length probabilities.
For a very good recent survey of work on state-dependent queues, we refer the reader to Dshalalow
[3].

The model here is a special case of that studied in [7]. However, we are able to give more
explicit analytical expressions, from which we can easily obtain asymptotic expansions for tail
probabilities and loss rates. These clearly show the qualitative dependence of these performance
measures on the arrival rate and the service distribution(s). In particular, we show that the tail
behavior of the model with threshold is much different than the tail behavior of the standard
M/G/1 and M/G/1/K models.

1.2 Statement of the Problem

We let be the queue length at time , including the customer in service, and let be
the remaining service time of the customer currently in service. Customers arrive according to
a Poisson process with arrival rate and are served on a first-come first-serve basis. There is a
single server and a queue with finite capacity . An arrival that would cause to exceed
is lost, without effecting future arrivals. The service time of each customer depends on the queue
length at the time that customer’s service begins. If the queue length at service initiation is less
than , the service time of that customer is 1, while if the queue length is greater than or equal to
, the service time is 2. The service times 1 and 2 have density functions 1 and 2 with
means 1 and 1, respectively. We define 1 1 and 2 1. The process is
Markov and is referred to as a supplementary variable.
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The stationary probabilities are denoted by

lim 1 (1.1)

0 lim 0 (1.2)

For finite capacity systems ( ), these limits clearly exist. For infinite capacity systems
( ), we assume the stability condition

2 1
0

2 1 (1.3)

The balance equations for (1.1)-(1.2) are

1 0 0 (1.4)
1

1 1 0 1 2 0 (1.5)

1 1 1 0 2 1 (1.6)

1 2 1 0 (1.7)

1 2 1 0 1 1 (1.8)

1 (1.9)

The normalization condition is

0
1 0

1 (1.10)

For infinite capacity systems, we omit equation (1.9) and let in (1.8) and (1.10).
An important local balance result can be obtained by integrating the balance equations with

respect to from 0 to , which leads to

1 0
0

1 (1.11)

In the following sections, we construct exact solutions to the infinite capacity model and
then the finite capacity model. As we will show, the solution of the infinite capacity model can be
used to construct the solution of the finite capacity model. Then we obtain simple formulas for the
performance measures by constructing asymptotic approximations to the exact solutions.

2 Infinite Capacity System ( )

We consider the infinite capacity model ( ) described by equations (1.4)-(1.8) with normal-
ization condition (1.10). For this model, equation (1.8) is valid for 1.
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M/M1,M2/1 Queue: To illustrate the important characteristics of the solution, we first consider
the case in which the service times, 1 and 2, are exponential with probability density functions

1 1
1

2 2
2 (2.1)

The solution of (1.4)-(1.8) can be constructed in a straightfoward manner as follows. For ,
we assume a solution of (1.4)-(1.6) in the form 1 which leads to the difference
equation

1 1 1 1 1 0 (2.2)

2 1 1 1 0 (2.3)

where
1

1
(2.4)

The solution of (2.2)-(2.3) is

0
1

1 1 1 (2.5)

so that
0

1
1

1 1 1 (2.6)

We now compute by first finding the value of 0 using (1.6) with 1 and the
known functions 1 and 2 , which leads to

0 0
1

1 (2.7)

We next solve (1.7) for in terms of 1 0 to obtain

2
0

2
1

1

1 2

2

2
1 0 (2.8)

To compute 1 0 , we substitute (2.8) into the local balance result (1.11) with . This leads
to

1 0 0 2
1

1
2

1
2

2

which when used in (2.8) gives

0
1

1
1

1

1

1

2 (2.9)

For , we seek a solution of (1.8) of the form

1 2 (2.10)
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which leads to the system of difference equations

1 1

2 1 2 1 1

The solution of the above equations is

1
1 1

2
2

1 2 1

1

1 1

where and are to be determined. By setting in (2.10), with and defined above,
and equating the result to (2.9), we find that

0
1

1
1

1

0
1

1
1 2

Thus, for , we have

0
1

1
1

1 1

1
1 1

1

1 2
2

2

1 2

1

1 1

1
2

The constant 0 is determined by normalization using (1.10) and the marginals
0

are summarzied below.

Theorem 1 M/M1,M2/1 Queue: Let and for 1 2 and assume that
the stability condition 2 1 is satisfied. The marginal probabilities are given by

0 1 0 1 1 (2.11)

0
1

1
1 2

1
2

1 2

1 2

1

1 1

1

(2.12)

where

0 1
1 1
1 1

1
1 2

(2.13)

An interesting aspect of the result is the tail behavior as . The tail probability
has a different form depending on the parameters:

0
1

1
1 2

1
2 if 1 2

2 1

2 1

1

1 1

1

if 1 2

(2.14)
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M/G1,G2/1 Queue: We now consider the system in which the service times 1 and 2 have
general distributions. For , we solve (1.4)-(1.6) with by introducing the generating
function

1
(2.15)

into (1.5)-(1.6) to obtain

1 1 1 0
1

1 0 (2.16)

where . The solution of (2.16) is given by

0
1 0

1
1 (2.17)

The unknown function 0 is found by setting 0 in (2.17) to obtain

0 0 1 ˆ1
ˆ1

(2.18)

where ˆ1 is the Laplace transform of 1 . Combining the result (2.18) for 0 in (2.17) and
simplifying we obtain

0 1
ˆ1

1
1 (2.19)

We invert to find an integral representation of the stationary probabilities in the form

0

2
1

ˆ1
1

1 (2.20)

The contour is a loop in the complex -plane which encircles the origin but excludes any other
poles of the integrand. By setting 1 and 0 in (2.20), we find that (1.4) is satisfied. Based
on the above calculation, we see that (2.20) is in fact a solution of (1.5)-(1.6) for . Thus,
we assume that for , the solution is of the form

2
1

ˆ1
1

1 1 1 (2.21)

for some constant , which will be determined later.
For , defining a different generating function

(2.22)

the equations (1.7)-(1.8) are transformed into

1 1
2 0 0 (2.23)
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The solution of (2.23) is

1
1 0 0

2
1

(2.24)
As before, we determine 0 by setting 0 in (2.24) to find that

0
0 ˆ2

0
1

1

ˆ2
(2.25)

The numerator of (2.25) vanishes as 1 using the local balance result (1.11) with 1,
i.e.

0
0

1 (2.26)

We use the known solution for 1 given by (2.21) to compute the integral in the numerator of
(2.25) as

0
1

1
2

1
1 ˆ1

ˆ1 ˆ1 (2.27)

and using (2.26) we find that for 3

0
2

1
1 ˆ1

(2.28)

Thus, 0 is determined by (2.25) using (2.27) and (2.28) up to the constant . We now use
0 and 0 to construct using (2.24). After some algebra, we find that

2
1

1 ˆ1

1 1
1

2 ˆ2
1

1 ˆ1

ˆ1 ˆ1 1

1
2 (2.29)

Thus, for , the stationary probabilities can be found by inverting (2.22) using

1
2

1
1 (2.30)

The quantities of interest are the marginal probabilities which are obtained by removing
the dependence on . We first compute

0
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The following identity is useful in calculating the marginal probabilities

0

1 ˆ

We find that by integrating and simplifying that

2
ˆ1

ˆ2
1

1 ˆ1
on (2.31)

In addition, we assume that 3 which is needed for the above simplification and to avoid a
degenerate problem. We invert (2.31) to obtain the marginal probabilities for 1 ,

2 2

ˆ1
ˆ2

1
1 1 ˆ1

(2.32)

The contours for the double complex integral are such that on the -contour and both are
small loops about the origin.

The marginals for are obtained by integrating (2.21) with respect to which leads to

2
1 ˆ1
ˆ1

1
1 1 (2.33)

and, using (1.4), we find that

0 2
1 ˆ1
ˆ1

1
(2.34)

Again the contours are small loops inside the unit circle.
To complete the solution, we find the constant using the normalization condition (1.10).

First, we compute

1
2

ˆ
1 0 1

1 ˆ
2 0 1 ˆ1

where on the contour we choose 1. The only poles inside are at at 0 and 1
if 1 1. Since ˆ

1 0 1 and ˆ
2 0 1, we find that

2
1 1

1 2 1 ˆ1
(2.35)

where on the contour we have 1 and 1 . In 1 1 , the function
ˆ1 is assumed non-zero.
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For , we must compute 0
1
1 . We simplify (2.33) as follows

2 1

ˆ1 1
ˆ1

1

1 2 1

1
ˆ1

1

which leads to

0

1

1 2 1

1
ˆ1

1
1
1 (2.36)

Combining the two sums, we find that

1
0

1 1
2

1 1

1 2 1 ˆ1
1
2 1

1
ˆ1

1
1
1 (2.37)

We simplify (2.37) by noting that if 1 1 then

1
2 ˆ1

1
1

ˆ1
1

1 1

so that
1
0

1 1
1 1

1 1

1 2
1

1
2 1 ˆ1

(2.38)

By shifting the integration contour, we can remove the restriction that 1 1, and obtain the
alternate form for 0 in (2.43).

The final results for the marginals are summarized below.

Theorem 2 (M/G1,G2/1) Let for 1 2 be the density functions for the general service
times with moments defined by

0
1

0
2 (2.39)

and let 1 1 and 2 1. We assume the stability condition 2 1 1 is satisfied and
that 3. The marginal probabilities are given by

2
1 ˆ1
ˆ1

1
1 1 (2.40)

and for 1 ,

2 2

ˆ1
ˆ2

1
1 1 ˆ1

(2.41)
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The probability that the system is empty is

0 (2.42)

where
1 1

1 2

2 1

1 2

1
2 1 ˆ1

(2.43)

All the integration contours are small loops about the origin.

To illustrate the formulas in Theorem 2, we consider the case of exponential service times
in which the density functions are defined in (2.1). The Laplace transforms of the density functions
are defined by

ˆ 1 2 (2.44)

so that for , (2.40) reduces to

2 1 1
1 (2.45)

For , we must compute the double contour integral. For the exponential case, the formula
(2.41) becomes

2 2
2

1

1 1

1 2

1 1

1 1

1
1

1
1 (2.46)

We compute the integral first by re-writting the above integral as

2
2

1

1 1

1 2

1
1

1
2

1 1

1 1

1
1

(2.47)
The poles of the integral are located at 0 1 1 1 so that this integral equals (Residue at
1 1), which gives

2
1

1
2

1

1
1 2

1
1 (2.48)

The remaining integral can be evaluated by observing that the integrand has poles at 0, 1 2,
and 1 1 1. Since the only pole inside of is at 0, we have the equality: (Residue at 0) =
(Residue at 1 2) + (Residue at 1 1 1) so that (2.48), after some simplification, reduces to

1
1

1 2

1
2

1 2

1 2

1

1 1

1

(2.49)

The above results agree with (2.11) and (2.12) in Theorem 1. Also, the formula for 0 in Theorem
2 reduces to (2.13).
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Asymptotic Approximations: Simple formulas can be obtained by asymptotically expanding the
exact integral representations for the stationary probabilities given in Theorem 2. An important
limit is 1 and 1. The asymptotic expansion in this limit depends on the location of
the zeros of ˆ1 , ˆ2 , and poles of ˆ1 . Specifically, we need to locate
the singularities of the integrand which are closest to the origin. Let be the non-zero solution of

0
1 (2.50)

We assume that ˆ are analytic for some with 0, which insures the existence of a
unique solution to (2.50). Clearly, and satisfies 0 if 1 1. We let be the solution
of

0
2 (2.51)

which satisfies 0 when 2 1 and 0 as 2 1. The Laplace transform ˆ1 may have
singularities in the half-plane 0. We assume the singularity with the largest real part is at

and that
ˆ1 (2.52)

for some constants 0. For example, if 1 is exponential then ˆ1
1

1
so that

1, 1, and 1 in (2.52). When 1
1

!
1

1
1, 0 , i.e. -stage

Erlang, then ˆ1
1

1
so that 1 , 1 and in (2.52). If the service

time is deterministic, i.e. 1 1 , then no singularity exists.
To derive the asymptotic formula for , we again view the double contour integral as

an iterated integral and approximate the integration first. The pole of 1
ˆ1

that is closest
to the origin is at 1 where is the root of (2.50). Thus, if 1,

1
ˆ1

1 1
1 2 1

2
1 1

1
1

1 ˆ
1

1

(2.53)

We define

0
1 (2.54)

so that 0 1 and

1

2
1

1 1 1

ˆ1
1 ˆ2 1 (2.55)
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"1

1 1+C/#1+B/#

z-plane

0

Figure 1: A sketch of the -plane indicating the location of the poles of the integrand.

!

1+C/#

z-plane

Figure 2: The contour !.

If 1 , there is no further simplification. However, if 1, then we can replace
the integral in (2.55) by an asymptotic approximation. The integrand is analytic at 1
but has a pole at 1 1 and (possibly) an algebraic singularity at 1 1,
(see Figure 1). The asymptotic approximation depends on the relative sizes of and .

If , then the integral in (2.55) can be approximated as
1

2

[Residue at so that as

0

1 1 ˆ1 1
1 1

1
1 1

(2.56)

where

0
2 0 1

When , the singularity at 1 of ˆ1 , (cf. (2.52)), determines the dominant
asymptotic behavior. The integral in (2.55) can be approximated as

1 !

where the contour ! is drawn in Figure 2. This leads to the following approximation for (2.55) as
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!$

w-plane

Figure 3: The contour ! .

:

0

2
( ) 1

1 1
1

1 ˆ2 !

1 1
(2.57)

The integral can be further simplified by letting 1 1
1 to obtain

!

1 1

!

1
1

1
1 1

1
1

1 1

1
1

1 1

!

where ! is shown in Figure 3. Using the substitution in the integral, we find that it
can be expressed in terms of the Gamma function, so that for ,

0
1

1 1
1

1 ˆ2
1

1

1 1

!

1 1
1

We note that if ˆ1 has a simple pole at then 1 and the algebraic factor 1 1

disappears.
We derive an asymptotic formula for 1, 1 and by using (2.40) and noting

that

0

2
1 ˆ1
ˆ1

1 0

2
1

ˆ1
1

0

2 1

0

1 1
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We now compute asymptotic approximations to 0 for 1. The constant 0 is defined
in Theorem 2 as

1
0

1
1 2

2 1

1 2

1
2 1 ˆ1

(2.58)

The poles of the integrand closest to 0 are at 1 and 1 . We approximate 1 0

when 1 as

1
0

1
1 2

2 1

1 2

1
1 1

1 1
1 1

(2.59)

1
1 1

1 2

1 2

1
1 1

1

Now if 1 1 1 then 0 and

0 1 1 (2.60)

When 1 1, we find that 0 so that

0
1 1

1 2
1 2 1

1
(2.61)

The final case is when 1 1. We set 1 1 and find that (2.50) gives

2
2

so that 0 as . In addition, we find that

1 1 1
0

1 0

Using the above, we find that if 1 1 1 then

0 exp
2
2 2

1 (2.62)

The results are summarized below.

Theorem 3 Asymptotic approximations forM/G1,G2/1 queue: For 1, and , , and defined
by (2.50)-(2.52), the stationary probabilities have the following asymptotic approximations:

1 and :

0

1 1 ˆ1 1
1 1

1
1 1

(2.63)
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where

0
2 0 1

1 and :

0
1

1 1
1

1 ˆ2
1

1 (2.64)

1 1

!

1 1

1

For 1 and ,
0

1 1
(2.65)

and

0

1 1 1 1
1 1

1 2
1 2 1

1

1 1

exp
2
2 2

1 1 1 1

For 1 and fixed (just above the threshold), the asymptotic result is given by (2.55) with
0 given above.
We specialize the above formulas to the exponential service case with for

1 2. For this case, we find that 1 1 1, 2 2 2
1, 1 1 2, and 2 2 2

2. We
explicitly solve (2.50) and (2.51) to obtain

1 2

In addition, from (2.52), we find that

1 1 1

Using the above results, we obtain

1 1
2

1 2
2

so that for 1, (2.64) simplifies to

2 1

2 1

1

1 1

1

which agrees with the result in (2.14). We note that is equivalent to 1 2 . A similar
reduction occurs for the case when .
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Finally, we examine the case when , more precisely 1 . For 1,
1 and , we have the approximation (2.65). We let and note that the

integral in (2.55) now has singularities (at 1 and 1 ) that are close to each other. We
consider the integral

Integral
1
2 1

ˆ1
1 ˆ2 1

We make the change of variables

1 1

and use the approximations

1
ˆ2

1
1 1

1
1

ˆ1 ˆ1

to obtain

Integral
1 1

1 1
2 !

1

Here the contour ! is shown in Figure 3 and it encircles both of the singularities of the integrand.
The final approximation to (2.55) is, for ,

0
1 1 1 1

1 1

(2.66)

where
1
2 !

1

If 0 (i.e. ) then is explicitly evaluated as

1 ! 1

3 Finite Capacity System ( )

When the queue length has finite capacity, the stationary probabilities are solutions of the system
(1.4)-(1.10). The result for the infinite capacity system (2.20) is still valid for 1 and the
result (2.30) is valid for except that 0 must be recomputed taking into account
that now 0 . In addition, the probability must be computed be solving (1.9), i.e.

1 (3.1)
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We set 1 in (2.30) and use the result in (3.1) to obtain

0

2 2
1 1

1
1

ˆ1
1

(3.2)

1
1

1

1
1

1
1

1
ˆ1 ˆ1

ˆ2
2

1
2

1

Here we have used the fact that

1
1 (3.3)

1
1 1

1
1

The main quantities of interest are again the marginal probabilities. The marginals for ,
1 and are given by (2.40) and (2.41) in Theorem 2, respectively. Again, the
constant 0 must be re-calculated. The marginal probability must be computed using

0

We use the identities

0
1 1

and

0

1
1

1 ˆ1
1

to obtain

0

2 2
1 1

1 ˆ2
1

(3.4)

1
1

1
1 1

ˆ1 1
1 2

ˆ1 1
1 2

1
ˆ2

ˆ1 ˆ1
1

ˆ2 1
1

1

This result can be further simplified by noting that

1 1
1 0 3

1
1 ˆ2 1

1
1

ˆ2
1

1
1

1 2
1 2

1 ˆ2
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and
1 1
2 2

1
1

1
1

1
1

1 1
ˆ1

1 1

2
1
1

1
ˆ1

The final result is

0 1
1 1

2
1
1

1
ˆ1

(3.5)

1 2

2 2
1

1
1
1

1 ˆ1
ˆ1 ˆ2

The normalization constant 0 is determined by (1.10), which we write as

1
0

1
1

1 0

1

0 0
(3.6)

Substituting (2.40), (2.41) (with replaced by 0), and (3.5) into (3.6), we find after simplifying
that

1
0

1 1

2
1
1

1
ˆ1

(3.7)

2

2 2
1

1
1
1

1 ˆ1
ˆ1 ˆ2

(3.8)

The results are summarized below.

Theorem 4 (M/G1,G2/1/K) Let for 1 2 be the density functions for the general service
times as defined in Theorem 2 and let 3. The marginal probabilities are given by

0

2
1 ˆ1
ˆ1

1
1 1 (3.9)

and for , K-1,

0

2 2

ˆ1
ˆ2

1
1 1 ˆ1

(3.10)

The probability that the system is full is

0 1
1 1

2
1
1

1
ˆ1

(3.11)

1 2

2 2
1

1
1
1

1 ˆ1
ˆ1 ˆ2
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The normalization constant 0, i.e. the probability that the system is empty, is

1
0

1 1

2
1
1

1
ˆ1

(3.12)

2

2 2
1

1
1
1

1 ˆ1
ˆ1 ˆ2

On all the contours it is assumed that the origin is the only singularity within the contour.

Asymptotic Approximations: We compute asymptotic approximations for the finite capacity
system as and for various values of 1 and 2. The asymptotic expansions of , except
for 0 and , are the same as in the infinite-capacity systems and are given in Theorem 3 for the
two cases .

Next, we expand 0 given by (3.12). The asymptotic approximation for the integrals depends
on the location of the singularities of the integrand that are closest to the origin and follows closely
the results for the infinite capacity system in the previous section (cf. the derviation of (2.59)).
For the single integral, these poles are at 1 and 1 , where 0 if 1 1. The
dominant poles of the double integral are located at 1, 1 and 1 where

0 and 0 if 2 1. Thus, for 1, 1, and , we find that

1
0

1
1 1

1 2

1 2

1
1 1

1

(3.13)

1
2 0 0

1 1 1 1
1

2 1
1 1 1 0

1 1
!

uniformily in 1 and 2.
We can simplify (3.13) for different values of the parameters. For example, since 0,

the last term in (3.13) is always negligible and may be dropped. The simplifications of (3.13) are
summarized below.

1. 1 1 and 2 1
0 1 1 (3.14)

2. 1 1 and 2 1
0 1 1 (3.15)

3. 1 1 and 2 1

0
1

exp 2 2 2 1 1 1 (3.16)
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4. 1 1 and 2 1

0
1 2

1 2
1 1 1

1
(3.17)

5. 1 1 and 2 1 (heavy traffic limit)

0
1 2 2

2 1 2 2
2

2 2
2 1 1

(3.18)

1 1 2 1

6. 1 1 and 2 1

0 1
1
1

1 1 1 1
2 0 0

(3.19)

7. 1 1 and 2 1
0 (3.20)

8. 1 1 and 2 1

0 1
1
1 1

1
1 1

1
exp 2 2 2 1

(3.21)

9. 1 1 and 2 1

(a) 1 : 0 1 1

(b) 1 : 0

(c) 1 1 : 0

Note that in the last case has a bimodal behavior as , with peaks near 0 and
.
The asymptotic expansion of as is computed by using (3.5) for 0 and

the expansions of the integrals which were derived for the infinite capacity case in Section 2. The
results are summarized below.

Theorem 5 Asymptotic expansions for the M/G1,G2/1/K queue: For 1 and , , and
defined by (2.50)-(2.52), the stationary probabilities have the asymptotic expansion (2.65) for

and (2.63)- (2.64) for 1. The asymptotic expansion for is

0

1
2 1

1 1

0 0
1 1
1

1 0

1
!

(3.22)
where the asymptotic expansions of 0 are given by items 1-9 above for various values of 1 and 2.
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4 Discussion and Numerical Results

We now demonstrate the usefulness of our results for a finite capacity system, namely the
M/D1,D2/1/ queue. For this model, the density functions of the service times are

1 1 2 1 (4.1)

This model corresponds to cell-discarding model analyzed in [11] if 1 1 2.
The exact solution is given in Theorem 4with (4.1) in place of the general density functions.

We illustrate how to numerically compute the exact solution. This calculation is only feasible for
moderate and . For large values of and , we constructed the asymptotic approximations in
Theorem 5. We demonstrate the accuracy of our asymptotic results by comparison with the exact
solution. As we will see below, our asymptotic results are quite useful for moderate values of ,
, and and are extremely accurate when , , and are large.

To evaluate the exact solution for in Theorem 4, we must compute the complex integrals
in (3.9)-(3.12). The simplest approach is to evaluate the integrals by using the method of residues.
The residue at 0 in (3.9) is difficult to compute if is large. This is a key motivation for the
development of asymptotic expansions. For moderate values of , we compute the residues using
the symbolic computation programMaple.

The double complex integrals in (3.10)-(3.12) can be evaluated by re-writting the term
1 (which couples the two integrals) as

1 1 1
1

1
0

Using this result in the integrand in (3.10) allows the double integral to be separated into

0

1
2

1 1
2

1

where can be identified from (3.10). The sum truncates at since for the
integral vanishes. Finally, we must evaluate both integrals by computing the residues at 0 and

0 for each value of . Again the calculation is only feasible for and moderate in size.
As before, we use Maple to perform the calculation.

The calculation of the asymptotic approximation requires computing the constants and
by solving (2.50) and (2.51), respectively. For deterministic service times, there is no singularity
so that . Given the constants and , we evaluate the formulas (2.65) and (2.63)

for if and (3.22) for . The constant 0 is given by (3.14)-(3.21), depending on the
values of 1 and 2.
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In Table 1, we consider a queue with the threshold 5 and capacity 10. The
arrival rate is 1 and the service times are 1 1 2 and 1 1 4 so that 1 1 2 and
2 1 4. Thus, when the queue length exceeds the threshold, the service time of the jobs entering
service is half of the original service time. For these values of , the asymptotic value of 0 is
given by (3.14). The solutions of (2.50) and (2.51) are 2 512 and 9 346, respectively.

Table 1
5 10 1 1 2 2 1 4

exact asympt. rel. err.
0 0.50072 0.50000 .00144
1 0.32483 0.47283 .45562
2 0.12277 0.13460 .09629
3 0.03784 0.03831 .01251
4 0.01092 0.01090 .00156
5 .24230e-2 .94023e-2 2.8803
6 .41153e-3 .90872e-3 1.2081
7 .56957e-4 .87828e-4 .542002
8 .68217e-5 .84885e-5 .24434
9 .74209e-6 .82041e-6 .10555
10 .63341e-7 .65832e-7 .03933

Table 2
5 15 1 1 2 2 1 4

exact asympt. rel. err.
0 0.50072 0.50000 0.00144
1 0.32483 0.47283 0.45562
2 0.12277 0.13460 0.09629
3 0.03784 0.03831 0.01251
4 0.01092 0.01090 0.00156
5 .24230e-2 .94023e-2 2.8803
6 .41153e-3 .90872e-3 1.2081
7 .56957e-4 .87828e-4 .542002
8 .68217e-5 .848857e-5 .24434
9 .74209e-6 .82041e-6 .10555
10 .76088e-7 .79293e-7 .042115
11 .75498e-8 .76636e-8 .015072
12 .73723e-9 .740688e-9 .004686
13 .71503e-10 .71587e-10 .001169
14 .69179e-11 .69188e-11 .000129
15 .55527e-12 .55518e-12 .000148

As we see from Table 1, the asymptotic expansion is quite accurate for 0, 2 4
and 8. It is not accurate for 1 and 5 8. This is consistent with our results in
Theorem 5 since the asymptotic result (2.65) is valid for 1 and (2.63) is valid for 1.
It is remarkable that our results are this accurate since and are only moderate in size. We
cannot expect the asymptotic solution to be accurate for since it assumes that .
We have chosen values for and that are quite small. In reality, we would expect them to be of
the order 102 (see [11]). For such large values of and , calculation of the exact solution would
prove difficult while the evaluation of the asymptotic solution is straightforward.

In Table 2, we consider the same queue as in Table 1 but now with 15. The values
for and are the same as for Table 1 since these constants are independent of and . We
see that the exact and the asymptotic results are numerically close to those in the previous example
for 10, as expected. For 10, the relative error starts at about 4% and rapidly decreases to
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under 1%.
The example in Table 3 is a queue with threshold 8 and capacity 15. The arrival

rate is 1 and the service times are 1 2 and 1 1 2 so that 1 2 and 2 1 2. In
this example, 1 1 so that in the absence of the threshold, the queue length distribution would be
peaked near the capacity . Now 0 7968 and 2 512. The asymptotic results are quite
accurate when . However, when the results are not accurate.

Table 3
8 15 1 2 2 1 2

exact asympt. rel. err.
0 .28305e-5 .28292e-5 .00044
1 .18084e-4 .18690e-4 .03351
2 .91796e-4 .91986e-4 .00206
3 .00045286 .00045271 .00033
4 .0022290 .0022280 .00044
5 .010970 .010965 .00044
6 .053991 .053967 .00044
7 .26572 .26560 .00044
8 .29180 4.4929 14.397
9 .19878 1.2789 5.4341
10 .10408 .36408 2.4980
11 .045665 .10364 1.2696
12 .017598 .02950 .67654
13 .0061526 .0083988 .36508
14 .0020014 .0023908 .19455
15 .00043941 .00047573 .0826589

Table 4
8 25 1 2 2 1 2

exact asympt. rel. err.
0 .28292e-5 .28292e-5 0.000003
1 .18076e-4 .18690e-4 0.033972
2 .91756e-4 .91986e-4 0.002507
3 0.000453 0.000453 0.000104
4 0.002228 0.002228 0.000002
5 0.010966 0.010966 0.000003
6 0.053968 0.053968 0.000003
7 0.265605 0.265604 0.000003
8 0.291673 4.492908 14.403916
9 0.198693 1.278988 5.436998
10 0.104037 0.364087 2.499576
11 0.045645 0.103644 1.270637
12 0.01759 0.029504 0.677286
13 0.00615 0.008399 0.365690
14 0.002001 0.002391 0.195078
15 0.000618 0.000681 0.100900
16 0.000185 0.000194 0.049898
17 .53894e-4 .55154e-4 0.023365
18 .15540e-4 .15700e-4 0.010298
19 .44505e-5 .44694e-5 0.004260
20 .12702e-5 .12723e-5 0.001652
21 .36196e-6 .36218e-6 0.000601
22 .10308e-6 .10310e-6 0.000205
23 .29348e-7 .29350e-7 0.000064
24 .83549e-8 .83550e-8 0.000017
25 .16624e-8 .16624e-8 0.000001

In Table 4 we retain 8 and increase to 25. Now the asymptotic results are accurate
to within 5% for 16 25. In Tables 3 and 4, the results are not accurate for 8 14.
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Apparently, 6 is too small a value for (2.63) to be useful, for these particular parameter
values.

In Table 5, we consider the same case as in Table 3 except that now 1 2 3 and hence
2 2 3. Now we have 0 7968 and 1 144. The results are to within 7% if 4
(i.e. 12 15). In Table 6 we increase to 25. The error is at most 7% for all 4 (i.e.
12 25).

Table 5
8 15 1 2 2 2 3

exact asympt. rel. err.
0 .21329e-5 .21219e-5 .0051
1 .13627e-4 .14017e-4 .02865
2 .69173e-4 .68989e-4 .00265
3 .00034125 .00033953 .00504
4 .0016796 .0016710 .00514
5 .0082667 .0082241 .00514
6 .040685 .040475 .00514
7 .20023 .19920 .00514
8 .25976 .85983 2.3100
9 .21133 .40103 .8976
10 .13486 .18704 .3869
11 .074723 .087239 .1675
12 .038095 .040690 .0680
13 .018535 .018978 .0239
14 .008803 .0088516 .0054
15 .0025867 .0025790 .00295

Table 6
8 25 1 2 2 2 3

exact asympt. rel. err.
0 .21219e-5 .21219e-5 0.000005
1 .13557e-4 .14017e-4 0.033970
2 .68817e-4 .68989e-4 0.002505
3 0.00034 0.00034 0.000103
4 0.001671 0.001671 0.000004
5 0.008224 0.008224 0.000005
6 0.040476 0.040476 0.000005
7 0.199204 0.199203 0.000005
8 0.258429 0.859833 2.327155
9 0.210249 0.401035 0.907433
10 0.134169 0.187047 0.394119
11 0.074339 0.087241 0.173549
12 0.0379 0.04069 0.073622
13 0.01844 0.018978 0.029203
14 0.008758 0.008852 0.010655
15 0.004114 0.004129 0.003551
16 0.001924 0.001926 0.001078
17 0.000897 0.000898 0.000297
18 0.000419 0.000419 0.000073
19 0.000195 0.000195 0.000014
20 .91124e-4 .91124e-4 0.000001
21 .42501e-4 .42501e-4 -
22 .19823e-4 .19823e-4 -
23 .92457e-5 .92457e-5 -
24 .43123e-5 .43123e-5 -
25 .12564e-5 .12564e-5 -

Our results should be very accurate for 25, but it then becomes difficult to evaluate the
exact solution. These numerical comparisons show that the asymptotic approximations are quite
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robust, and are accurate even for relatively small values of and . Tables 4 and 6 show that
when 25 , the two results agree to five decimal places. Loss rates can thus be calculated
to a very high precision using our asymptotic formulas.
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